

### VASIMR<sup>®</sup> Propulsion Development - Ready for the Next Level

Jared P. Squire

AIAA Lunch and Learn 13 November 2014 Houston, Texas

## Outline

Summary of technology development status

- VASIMR<sup>®</sup> Technology Basics and Key Elements
  - Measured performance
- TC-1 and TC-1m, flight model VASIMR<sup>®</sup> engine elements.
- Major technological element descriptions
  - Rocket Core
  - RF Power Processing (PPUs)
  - High Temperature Superconductor (HTS) Magnet
  - Thermal Management
  - Propellant Management, and Command and Date Handling (C&DH)
- Spaceflight model performance
- Next level: thermal steady-state, VX-200SS
- SEP Applications
- Conclusions

## Progress in Technology development

- Plasma production performance
- Plasma acceleration performance
- Integrated system performance
- RF power processing technology
- Superconducting technology
- Mass assessment
- >Thermal steady-state demonstration
- >Spaceflight system version TRL 6

>Independent testing



# Major VASIMR<sup>®</sup> Elements



Plus thermal control for all systems

## **VASIMR Technology: Basic Principles**



4. Detachment of plasma from the vehicle.

#### VX-200 in the 150 m<sup>3</sup> Vacuum Chamber, top view



Chamber divider wall to maintain high vacuum (~10<sup>-6</sup> torr) in the Rocket region during the firing.

#### Exit plane 🕈

VX-200 firing at 200 kW, argon propellant. 2010 Three PHPK TM-1200i nude cryopanels (58,000 l/s Ar) were used for the duration of the campaign to maintain ~10<sup>-8</sup> torr base pressure and minimize charge-exchange.

## **Measured Thruster Efficiency**

- Performance using argon propellant in VX-200.
- Size the system for the I<sub>sp</sub> range of high efficiency, 3000 to 5000 s, argon propellant.
- ICH to Helicon power ratio together with gas input controls the specific impulse and sets the size of the RF generators.

- Up to 200 kW RF power operation is <u>repeatable</u>
- Thermal measurements taken during operations
- Krypton helicon efficient operation demonstrated
- Details of these data are peer reviewed:
  - Longmier, B.W., et al., *Journal of Propulsion and Power*, **27**, July August 2011.
  - Longmier, B.W., et al., *Journal of Propulsion and Power*, **30** January February 2014.



### VX-200 plume detaches from magnetic field

- Plasma detachment is evident per C.S. Olsen, IEEE Transactions on Plasma Science (2104) and PhD Thesis (Rice University 2013)
- Within 2m of the VX-200 rocket core exit, the ion flux is measured flowing independently from the magnetic field.
- Classical resistivity, comparable with natural reconnection physics, seems to dominate detachment (\(\nabla\cdot J = 0\)) although some fluctuations in the anomalous region are observed



#### Six Basic Subsystems of a Spaceflight VASIMR® TC-1 and TC-1m

- A TC-1 is a complete VASIMR<sup>®</sup> single-core spaceflight engine, VX-200 sized.
- > A TC-1m a "mini" version, about half the size and power.
- Power of TC-1: 50 to 250 kW and TC-1m: 25 to 150 kW.
- Variable specific impulse capable at a chosen constant total power, I<sub>sp</sub> range of **3000 to 5000 s** with **argon** propellant, krypton capable.
- ➤ A VF-200<sup>TM</sup> is a specific clustering of two TC-1s or TC-1ms.
- 1. Rocket Core
- 2. RF PPUs
- 3. HTS Magnet
- 4. Thermal

Management

- a) Spacecraft (35 °C)
- b) High-T (250 °C)

#### 5. Propellant Management (PM)

6. Command & Data Handling (C&DH)



#### System Mass Scales with Processed Power





High-T Thermal

#### Rocket Core, Steady-state model in the building process

- We have developed a highly detailed design of a flightrelevant, TC-1, steady-state core for testing in VX-200SS.
- Pro-Engineer CAD model calculates a precise mass.
- Include fluid and MLI to protect the magnet.
- $TC-1: B_{RC} = 82 \pm 4 \text{ kg and } TC-1m = 42 \text{ kg}$



# PPU is ready for flight development

Steady-state compact and highly efficient RF PPUs operated with both plasma stages. TRL 5-6 (individual boards in vacuum)

Helicon

#### ICH

#### Power rated: 48 kW

Efficiency: Size: Weight: 91% (expect to increase to 95%) 40 cm x 40 cm x 120 cm 40.1 kg;  $\alpha = 0.9$  kg/kW



Silicon Carbide technology has come to market since these first generation RF generators, so improved performance is possible.

 Power rated:
 180 kW (24 hr ss burn in)

 Efficiency:
 98% now

 Size:
 40 cm x 40 cm x 120 cm

 Weight:
 87.1 kg; α = 0.5 kg/kW



# HTS Magnet Technology is ready

- High Temperature Superconductor (HTS) technology has made tremendous gains in the last decade, e.g. SuperPower<sup>®</sup> YBCO tape.
- Higher temperature enables the use of high efficiency cryocoolers, such as the Sunpower<sup>®</sup> GT models.
- Detailed electromagnetic analysis coupled with the Rocket Core
- Mechanical analysis under Falcon 9 launch loads.
- $TC-1: B_M = 199 \pm 20 \text{ kg and } TC1-m: B_M = 124 \pm 20 \text{ kg}$



#### Thermal Management, parametric mass model

- We baseline a two temperature thermal rejection system using pumped loops to create a parametric model for the mass scaling.
  - Spacecraft thermal, ~ 35 °C
  - High–T, ~ 250 °C

$$M_{plj} = M_{fj} + \left[\alpha_{pl} + \frac{m_R}{N_s \eta_{Rj} \sigma T_{Rj}^4}\right] Q_{Rj}$$

>  $A_{TM} = 0.4 \text{ kg/kW}$  and  $B_{TM} = 61 \text{ kg}$ 

- Pumped loop
  - $M_f = 25 \text{ kg}$
  - $\alpha_{pl} = 0.26 \text{ kg/kW}$
- 2-sided radiators

$$-N_{s}=2$$

- 
$$\eta_R = 0.75$$

- 
$$m_R = 4 \text{ kg}/\text{m}^2$$

14



#### Propellant Management and C&DH, TRL 7+

- Propellant management, B<sub>PM</sub> = 19.7 kg
  - Based on VACCO XFCM
  - Valves, fittings and tubing
  - Control electronics
  - Plus cabling





C&DH: B<sub>C&DH</sub> = 20 kg
 COTS control products
 Plus cabling





# TC-1 has a very wide power range for operation with argon or krypton

- Benchmark physics-base performance model.
- Based on VX-200 (argon data shown) with modeling to optimize performance
- Plasma source operation was experimentally verified with krypton propellant
- Same curves apply for TC-1m, limited to 150 kW



# VASIMR® TC-1m mass advantage above 60 kWe, complementary to HET technology

- HET mass model (Hofer) plus 0.5 kg/kW active PPU cooling, η for 457M v2.
- TC-1m mass model with a gimbal added.



#### VASIMR<sup>®</sup> TC-1m clusters favor one active thrusters with spare, while HET favors more than five

Mass comparison for a single-string fault tolerant 150 kW system



# VASIMR<sup>®</sup> is complimentary to HET technology with a transition at about 50 kW

- Funding to develop both Hall Effect Thruster (HET) and VASIMR<sup>®</sup> (and others) technologies is important!
- Above single-string power levels of about 50 kWe, VASIMR<sup>®</sup> technology shows competitive advantage.
- Solar power, electric bus and operational technologies are in common.
- VASIMR<sup>®</sup> technology is favorable for missions requiring system jet power levels above 80 kW .
  - Higher and flexible I<sub>sp</sub>
  - Lighter
  - Higher efficiency
  - Simple PPU



The mass of solar panels, assumed to be 7 kg/kW, is important. The effect of efficiency on propellant savings is a bigger effect assuming 5000 kg of propellant per 40 kW of input power.

## Challenges to build and test a VX-200SS

- Plans for upgrading with active cooling for thermal steady-state testing, more than 100 hours at high power.
  - The VX–200 rocket core
  - RF Power Processing systems
  - Superconducting Magnet servicing
  - Significant chamber setup to perform duration testing at over 100 kW.

#### Preparations for Steady-State, VX-200SS

VX-200SS setup in the 150 m<sup>3</sup> Vacuum Chamber, top view



#### Exhaust Plasma Diagnostics will need Modifications



#### VASIMR 400 kW Solar Electric Space Tug for Cargo Delivery from LEO to L1, or beyond

- Mounting interest for L1 as staging point near Moon for deep space missions
- Support of this outpost needs to be (economically) sustainable
- chemical propulsion not cost effective (low payload capability=high cost)
- IMLEO is limited by foreseeable launch capability (~50 t to LEO)
- Study assumes 400 kW VASIMR solar electric propulsion
- Ad Astra is conducting a mission study based on potential outpost mass
- This same tug has application to support human exploration of Mars



| lsp   |       | Mass Budget [t] |         |      |              |         |        | Time [days] |          | DelV[m/sec] |
|-------|-------|-----------------|---------|------|--------------|---------|--------|-------------|----------|-------------|
| [sec] | IMLEO | Prop(LEO-L1)    | PayLoad | IML1 | Prop(L1-LEO) | FMLEO   | LEO-L1 | L1-LEO      | [kg/sec] | LEO-L1      |
| 5000  | 50    | 6.3             | 37.5    | 5.6  | 0.7          | 4.8     | 363    | 41          | 0.00020  | 6,556       |
| 2500  | 50    | 12.0            | 30.3    | 6.5  | 1.6          | 4.8     | 173    | 22          | 0.00080  | 6,652       |
| 1500  | 50    | 18.8            | 21.1    | 8.2  | 3.1          | 4.8     | 98     | 16          | 0.00222  | 6,811       |
| 450   | 50    | 29              | 15      | 6    | chem one w   | ay only | 4      | N/A         | N/A      | 3800        |
| 350   | 50    | 33              | 10      | 7    | chem one w   | ay only | 4      | N/A         | N/A      | 3800        |

## **Asteroid Redirect Alternate**

- Assume 1300 ton asteroid (ref.
   Keck Institute for Space Studies)
- Time value of money is important factor



Concept of a 200 kW VASIMR<sup>®</sup> engine adapted to KISS study NEA retrieval module

| Туре                  | Fuel<br>Type | Fuel<br>Cost     | Years | 2012 Cost | Final Cost |
|-----------------------|--------------|------------------|-------|-----------|------------|
| VASIMR®<br>VF-200     | Argon        | \$5<br>per kg    | 2.0   | \$3.3B    | \$5 B      |
| Hall Thruster<br>40kW | Xenon        | \$1000<br>per kg | 10.1  | \$2.6B    | \$20 B     |

## Orbital Debris Removal

Example: Initial Mass in Low Earth Orbit (IMLEO) and mission time required to remove 19, 8.3 ton "Zenit" SL-16 rocket upper stages in 19 different high inclination orbits.



|   | Technology    | Propellant | I <sub>sp</sub> | Mission<br>time | IMLEO | Cost   |
|---|---------------|------------|-----------------|-----------------|-------|--------|
| 1 | Hall Thruster | Xenon      | 3000            | 10.5 y          | 80 t  | \$800M |
| 2 | VASIMR®       | Argon      | 5000            | 9 у             | 30 t  | \$300M |
| 3 | VASIMR®       | NH3        | 7500            | 10 y            | 20 t  | \$200M |

#### **VASIMR®** Deep Space Catapult for Jupiter Missions

#### See Paper 105-ST-3, paper by E. Bering.

Primary propulsion for a growing market of deep space planetary missions carrying exploratory robots. Payload capacity is bound by launch capability and cost.

Ad Astra's fast payload delivery approach utilizes a VASIMR<sup>®</sup> solar electric space tug using a solar power boost trajectory. The tug is ultimately recovered for multiple uses.

Example: a 22 t solar-electric, VASIMR<sup>\*</sup> driven spacecraft, starting at the Earth Sphere of Influence, delivers a 4,000 Kg payload to Jupiter in about 2.8 years (for comparison: NASA's 3,625 kg Juno spacecraft will take over 5 years to reach Jupiter)



## **Asteroid Deflection**

Deflecting a 7 million ton, 150 m asteroid on a collision course with Earth



#### Conclusions

- VASIMR<sup>®</sup> system technology has made significant progress toward SEP spaceflight ready application.
- ➤ The VX-200<sup>TM</sup> program has proven and published plasma and power performance data.
- TC-1m, "mini", version with 25 to 150 kWe runs with argon or krypton propellant. I<sub>sp</sub> = 2000 to 5000 s and system efficiency of 70% is possible.
- VASIMR<sup>®</sup> technology is complementary to HET with a specific mass advantage transition at about 50 kWe.
- The next level of development is thermal steady-state durations testing at 100 kW.
- There are many exciting SEP applications for a 100 kWe class VASIMR<sup>®</sup> propelled spacecraft.