Feasibility of Transferring On-Orbit Components of the International Space Station for Solar System Exploration

ECAPS LLC Yvonne Vigue-Rodi

Shen Ge

Adelante Sciences Corporation May 6, 2016 AIAA Houston Annual Technical Symposium

- Problem Statement
- Assumptions
- Why go to the moon?
- International Space Station
- How do we get there?
- Alternative Propulsion Systems
- Closing Thoughts

Problem Statement

- Context:
 - The International Space Station is in operation and will be decommissioned by 2024.
- Problem:
 - Explore whether the ISS can be reused for a space station near the moon.
- Approach:
 - Separate and transfer US portion of ISS components to a lunar orbit.

Assumptions

- ISS will be decommissioned in 2024
- A human habitat at lunar orbit or Earth-moon Lagrange point is the next human spaceflight target
- ISS components at such locations can be maintained autonomously prior to human arrival and provide a habitat for emergency rescue purposes
- ISS components can be equipped with science payloads to survey the moon

Why go to lunar orbit?

- Establish a robotic and human space station or space stations near the moon as a platform for
 - Future manned or robotic lunar surface scientific, exploration, and mining missions
 - Supply depot for exploration missions beyond the moon.
 - Research laboratory on lunar materials
 - Scientific observation, especially on the far side of the moon and the polar regions

Science

- Search for water at poles
- Identify minerals
- Map gravity field and topography
- Detect charged particles of exosphere

What ISS components are we using?

- Unity (Node 1)
- Tranquility (Node 3)
- Cupola
- Destiny US Lab
- Permanent Multi-purpose Module
- Harmony (Node 2)

Visiting Vehicles Docked to ISS

Six Visiting Vehicles at ISS - 10 April 2016

HistoricSpacecraft.com

How do we get there?

What type of trajectory is best?

	Earth Injection	Moon Insertion	Total
Transfer Type	$\Delta V (km/s)$	$\Delta V (km/s)$	∆V (km/s)
Minimum	3.099	0.622	3.721
BLT	3.235	0.644	3.879
Belbruno/Miller	3.187	0.651	3.838
Biparabolic	3.232	0.714	3.946
Hohmann	3.140	0.819	3.959

SpaceX Falcon 9 Full Thrust 2nd Stage

What engines should we use?

Delta Cryogenic Second Stage (DCSS)

Image Credits: NASA, SpaceX, Boeing

How much propellant to reach there?

Which engine should we use?

Manned Missions

Manned Lunar Mission

2025 - ∞

Apollo Program 1961 Oct – 1972 Dec

Future Propulsion Systems

Aerojet Rocketdyne's Solar Electric Propulsion (SEP)

Helion Energy's Fusion Engine

Ad Astra's Variable Specific Impulse Magnetoplasma Rocket (VASIMR)

Image Credits: NASA, Helion Energy, Ad Astra

Closing Thoughts

Image Credit: http://www.spudislunarresources.com/

Repurposing the ISS for a low lunar orbit space station 1) reuses the ISS components and 2) reduces cost significantly for future lunar missions and those beyond the moon.

References

- 1. Biesbroek, R. and Janin, G. Ways to the Moon? ESA Bulletin 103, August 2000.
- 2. Parker, S. Jeffrey. Families of Low-Energy Lunar Halo Transfers, Paper AAS 06-132, AAS/AIAA Spaceflight Mechanics Conference, Tampa, Florida, January 22-26.
- 3. Wolma, Kyle. Use of Lagrange Points for Lunar Exploration Settlement, and Support. 2012. http://ccar.colorado.edu/asen5050/projects/p rojects_2012/wolma/

Shen Ge

<u>shenge86@gmail.com</u> <u>http://www.shenge.us</u>

Yvonne Vigue-Rodi

yvonne.viguerodi@adelantesciences.com http://www.adelantesciences.com