
Integrating Tests of Autonomy with SW and People: Autonomy
Requirements Tester (ART)

AIAA-HSI ATS 2017
Carroll Thronesbery, Ayman Qaddumi, Michael Merta, Eugene

McMahon, Mike Monahan

Background: core Flight System (cFS)
• Autonomy Requirements Tester (ART) is design to be

compatible with core Flight System (cFS)
• cFS architecture and software

• Software platform developed by Goddard Space Flight Center
(GSFC)

• Reusable software framework across multiple projects
• Set of reusable software applications
• Dynamic run-time environment (real-time constraints)
• Layered software
• Component based design
• Publish-subscribe message communication to make component

apps independent

• ART can easily be modified to fit any pub-sub architecture

8/1/2017
Page: 2

Autonomy Requirements Tester
(ART): Human Centered View

• A tool to support software developers
• Especially flight software

• People Tasks:
• Capture autonomy requirements

• Generate test specifications

• Execute the test specs

• Report results

• Iterate for test-driven development

8/1/2017

Slide 3

cFS-based Autonomy Requirements
Tester (ART) project: System View

NASA Phase I SBIR sponsored by ARC & JSC

• Design eXtensible Markup Language (XML) schema to define
cFS data models to support app-level testing

• Describe potential approaches for semi-autonomous test
generation

• Design displays that support the management of
requirements, test designs, and test results

• Develop a Concept of Operations (ConOps) with scenarios
illustrating how ART supports people tasks

• Develop and demonstrate feasibility prototype

Represent Data for Progression from
Requirement to Test Results

Autonomy Requirement

When a person is near the
robotic arm, its movements
should be reduced in speed. Test Objective

(Behavior)

When any sensor detects a
range of 3 feet or less:

IF (range to human <= 3 feet)

THEN switch to slow arm motion
mode (which reduces the
highest arm speed to no greater
than 0.5 feet per second)

Test Input
IR sensor range
IR_range <= 2.9 feet

Expected Results
Arm_Motion_Mode = slow

(Publish Msg)
IR_Range_To_Human

IR_range <= 2.9 feet

(Subscribe Msg)
Arm_Mode_Change

(expect value to be:
Arm_Motion_Mode = slow)

Test Input

Camera estimated range
Camera_Est_Range = 2.9 feet

Expected Results
Expect values of
Arm_Motion_Mode = slow

Test Runner Uses CFS Pub/Sub
Architecture

Test Runner Reads Test Spec, Produces
Test Results

Data Model Based on IEEE Standards

8

adopted by the Institute of Electrical and Electronics Engineers (IEEE) as a standard (IEEE Std 1671-2010)

Generating the Test Plan from
Requirements
Observation from Phase I exercise with APL Solar Probe
Plus type autonomy requirements

– Similarities from one requirement to the next
• Often a tiered response, when first tier doesn’t correct the issue,

go to the next tier

• Rule based behavior: If {condition} then {response}

– Similarities enable the formation of a template (illustrated
on next page) for generating the test

– Some additional parameters are needed in addition to the
template (illustrated on the page after that)

Generating Detailed Test Plans

10

• Detailed test plan can become tedious to specific in every
detail

• Templates for a given set of requirements can remove some of
the tedium

• Can encourage test-driven development

Parameter Entry to Enable Test
Generation from Template

Template Contents for Generating
Details of Test Specification

8/1/2017

Slide 12

1st Part of Detailed Test Plan

For Browsing Requirement

Viewing Details from Test Plan

A Graphical View of the Test Plan

A View of the Test Results

TestRunner Detailed Results

18

ART Emphases
• Focus of Phase I (completed)

• Hard, real-time autonomy (low level of autonomy) and cFS
• Test-driven development
• Unit test for app in publish-subscribe architecture

• Advantages of this approach
• Start test driven development early
• Ease the expression of autonomy requirements in terms of expected behavior
• Support pre-integration testing – unit testing and regression testing
• Make integration testing time more productive – no logic errors in software
• During integration, if software changes are required

• If software changes are required

• Make the changes

• Re-run the pre-integration test to ensure no errors were inadvertently entered

• Resuming integration testing

Innovations
• Represent requirements and link with intended behaviors for

testing the requirements

• Formal data models for requirements, behavioral expectations,
test specifications, and test results

• Use of template to drive the elaboration of test specifications

• Support for test driven development

• Integration of the testing mechanism with the operational
environment to support (CFS users)
• Enabled by modular architecture w/ pub-sub communications scheme
• No change to the unit under test between testing and operations
• Paves the way for runtime checkout routines for selected apps (e.g.,

sensors for deep-space science operations)

• Reporting of test results – similar appearance to specifications,
still linked to requirements

8/1/2017

Slide 20

Next Steps

• Identification of how to support higher levels of
integration testing:

• Identification of how to support additional types of
autonomy requirements:

• Identification of additional options for semi-
autonomous test generation:

• Proof-of-principle prototype of ART

• Evaluation of proof-of-principle prototype

8/1/2017

Slide 21

