A Student-Developed High Power Rocket

UNIVERSITY of HOUSTON

Presented by: Alex Blick, Chief Engineer

Space City Rocket Team Overview

- Competitive student engineering team at UH
- Hosted by the AIAA-UH student branch
- Compete annually at the Spaceport America Cup

Previous Competition Vehicles

2018 PROMETHEUS

18

Only reached 7,200 ft

Nosecone and fins cracked upon landing

2019 **OBERON**

Reached 12,000 ft Received no significant damages

2020 competition was cancelled due to COVID

Competition Launch 2019

SPACE CITY ROCKETR

2021 Competition Rocket: Oberon II

- An upgraded version of the original Oberon
- Will be our third competition launch

General Specifications:

- 10 feet tall
- 6 inch diameter
- Weighs 56 lbs
- Fiberglass body

Solid–Propellant APCP Motor

Max thrust:	4780 N
Average thrust:	2946 N
Burn time:	3 seconds
Total Impulse:	8838 Ns

Predicted Flight Performance

Apogee:	10,700 ft
Max velocity:	313 m/s
Max accel:	183 m/s²

Design Overview

Black Powder Separation

The Modular Motor Mount (MMM)

Conventional Fin Installation

Modular Approach

The Modular Motor Mount (MMM)

- Replaceability
- Minimal design
- Efficient Assembly

On-Board Sensor Network

Implementing sensors to measure and record various data during flight

- Stress/strain in the fins
- Temperature of the motor casing
- Internal pressure of the black powder charges

Sensor Network Components

Temperature

3 thermocouples 3 digital converters

Pressure

2 pressure sensors

Stress/Strain

4 strain gauges 2 load cell amplifiers

Sensor Network Circuitry

Bioengineering Experimental Payload

- Investigating the affects of high g-forces on cell growth and cell structure
- Analyzing the growth of Giant Kelp (Macrocyctis pyrifera) cells
- Cells will be recorded during flight at a microscopic level

Vibrational Damping System

- Reduce turbulent vibrations and dynamic loads experienced by the payload bay during flight
- Goal to facilitate the development of more accurate data
- Initial design takes form of a spring-damper system located in the payload bay

 $M_r = rocket mass$ $M_b = payload bay mass$

Student Research & Development

SRAD projects for Oberon II and future competition rockets:

- Programming our own flight computer from scratch
- Winding our own carbon fiber body frame
- Developing our own custom parachutes
- Begin research for creating our own solid propellant

