Commercial Lunar Payload Services (CLPS)

Chris Culbert Manager, Commercial Lunar Payload Services NASA Johnson Space Center

Agency Priorities

To achieve a sustainable presence on the moon through innovative publicprivate partnerships with US commercial companies and international partners.

- Gateway to Lunar Surface will facilitate
 - Human lunar landing by 2024

Phased Approach

- Sustainable missions by 2028
- New Lunar Science and Technology enabled by
 - Small commercial lunar landers as early as 2020
 - Medium-size landers and rovers by 2023

Commercial Lunar Payload Services

- NASA wants to be a marginal customer, one of many payload providers. NASA does not intend to manage or direct these commercial missions.
- Sponsored (programmatic and funding) by the Science Mission Directorate in support of NASA's science, human exploration and technology goals.
- Master contract awarded to vendors to safely integrate, accommodate, transport, and deliver NASA payloads using contractor-provided assets, including launch vehicles, lunar lander spacecraft, lunar surface systems, Earth re-entry vehicles, and associated resources.

Contract Details

 CONTRACT TYPE: The Government awarded 9 fixed-price, indefinite delivery indefinite quantity contracts in November 2018 and added 5 more vendors in November 2019.

Contract cont'd

- ESTIMATED VALUE: Min \$25k Max \$2.6B per each contract awarded. The maximum ordering value of the firm fixed price contracts and associated task orders is \$2.6B, individually and cumulatively.
- **CONTRACT PERFORMANCE PERIOD:** 10-year Effective Ordering Period.
- ON-RAMPING: Every two years, or as needed, the government will perform a market analysis to assess capability growth across the industry and space transportation sector.
 - If warranted, the government will issue requests for proposals to on-ramp additional vendors as industry emerges with new candidates and capabilities.
 - No further on-ramping will occur after Contract Yr. 8
 - First on-ramp completed in November 2019

Task Order Process

- Task orders will be issued on an "as needed basis"
- Vendors must respond to each task plan requested by NASA
- Task Order's SOW will describe the specific requirements
- The period of performance shall be specified on each individual task order
- Mission success criteria will be defined for each task order
- Task orders will be competed among all vendors in the contract pool

Task Order History

- Task Order #1 Payload User's Guides
 - Received from first 9 companies; reissued to 5 new companies
- Task Order #2 First Payload deliveries to the Moon
 - Selected 3 companies
- Task Order #3 Study on mid-sized landers
 - Selected 2 companies and finished studies in July 2019
- Task Order 19C Collection of science instruments
 - Going to a lunar pole
 - Awarded to Masten April 2020
- Task Order 20A VIPER Mission
 - Mid-size lander to deliver NASA rover and instruments to the South Pole
 - Awarded to Astrobotic June 2020

CLPS Delivery Task Order Selections

- May 31, 2019 NASA selects first Commercial Moon landing delivery services for Artemis Program to deliver science and technology to the Moon
 - Astrobotic of Pittsburgh awarded \$79.5 million to fly as many as 14 payloads to Lacus Mortis, by July 2021
 - Intuitive Machines of Houston awarded \$77 million to fly as many as five payloads to Oceanus Procellarum by July 2021
 - Orbit Beyond of Edison, New Jersey awarded \$97 million to fly as many as four payloads to Mare Imbrium, by September 2020

2021 CLPS Delivery Manifests

Astrobotics

Surface

Navigation

Doppler Lidar

for Precise

Velocity and

Range Sensing (NDL)

Surface Exosphere Alterations by Landers (SEAL)

Photovoltac Investigation on Lunar Surface (PILS)

Near-Infrared Volatile Spectrometer System (NIRVSS)

Mass Spectrometer Observing Lunar Operations (Msolo)

PROSPECT Ion-Trap **Mass Spectrometer** for Lunar Surface Volatiles (PITMS)

1165	
Linear Energy Transfer Spectrometer (LETS)	
Neutron	Key
Spectrometer	Science
· System (NSS)	Technolog
	Exploration
Neutron Measurements at the Lunar Surface (NMLS)	HEOMD/STI In-line tech
Fluxgate Magnetometer (MAG)	

Lunar Node 1 Low-frequency Radio Navigation **Observations from the Demonstrator (LN-1)** Near Side Lunar Surface (ROLSES) **Stereo Cameras for** Lunar Plume-Surface **Radio Frequency Mass** Studies (SCALPSS) Gauge (RFMG)

Intuitive Machines

Navigation Doppler Lidar for Precise Velocity and Range Sensing (NDL)

Cryo Methane Propulsion Data Buy

GSFC Laser Retroreflector Array (LRA) included on each lander.

VIPER (Volatiles Investigation Polar Exploration Rover)

Overview:

- Directly characterize the nature/distribution of volatiles at the lunar poles
- Understand the lateral and vertical distribution and physical state/composition
- VIPER will build Lunar resource models, steering the future commercial resource marketplace
 - Specs:
 - Mission 75-100 earth days
 - Rover + Payload Mass: 300 kg
 - Rover Comm: X-band (300kbps directional / 2kbps omni)
 - Rover Dimensions: 1.5m x 1.5m x 2m

Project Timeline:

FY19: Phase A (Formulation) thru SRR
FY20: Phase B/C: PDR (Implementation)

- Rover Power (nom): 300W
- Max speed: 25cm/s. Prospecting: 10cm/s
- Lander + Launch Vehicle: CLPS commercial contract

- FY21: Phase C: CDR (Critical design)
- FY22: Phase D: SIR/I&T (Integration & Test)
- FY23: Launch (targeted)

Task Order 19C CLPS Delivery Manifest

Surface (LSITP) **Payloads** Lunar from Technology selected Payloads largely Instrument and T

Lessons Learned

- NASA is a critical player in establishing early commercial capability
- The vendor pool is both capable and robust but future market projections are very incomplete
- To create the right partnership between NASA and commercial entities requires both sides to adapt and make adjustments
 - NASA has a very hard time sticking to a set of requirements
 - NASA has to approach mission concepts in a different way when using commercial services
- Areas such as Mission Assurance and cross payload responsibilities need a lot more discussion
- The opportunity to fly to the Moon multiple times per year will have a significant impact on both Lunar science and human exploration