National Aeronautics and Space Administration

Human Lunar Mission Design: Then & Now

Nujoud Merancy, Michael Sarafin, Dr. Jennifer Gruber NASA JSC Exploration Mission Planning Office

NASA HQ Human Exploration and Operations Mission Directorate

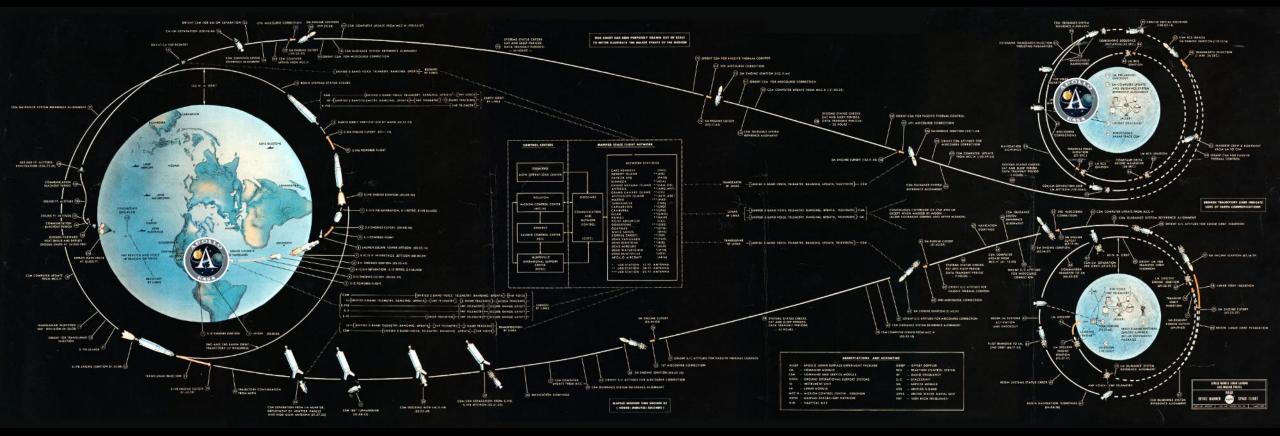
Apollo & Artemis Objectives

Then

"[The US] should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth."

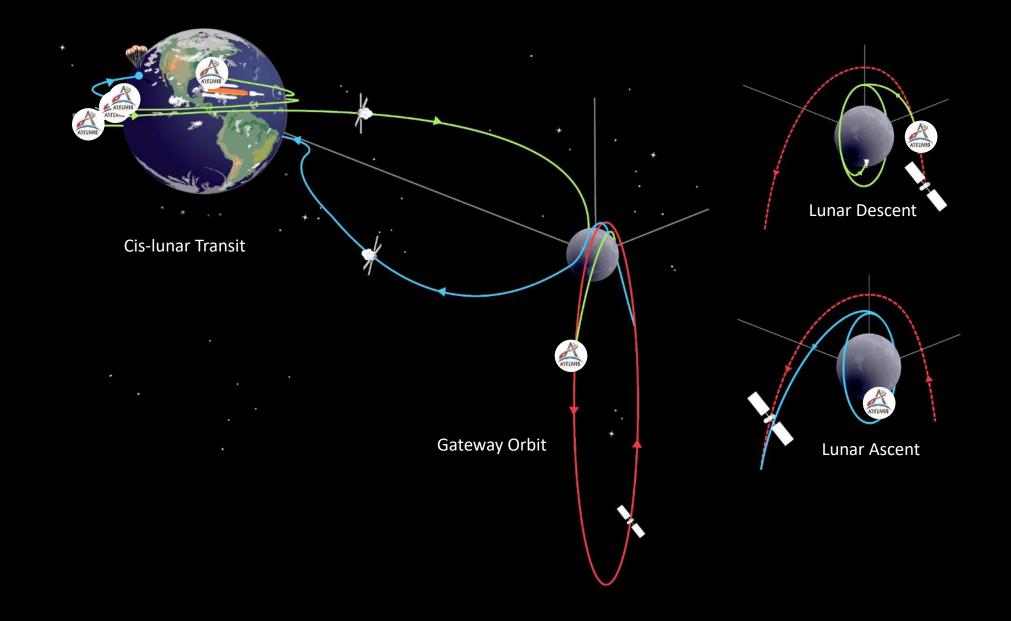
> -John F. Kennedy President, 1961

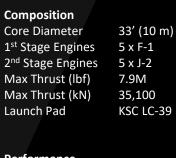
Now


"This time, when we go to the Moon, we will stay. And then we will use what we learn on the Moon to take the next giant leap - sending astronauts to Mars "

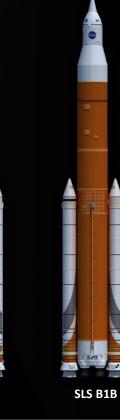
-Jim Bridenstine NASA Administrator, 2019

Mission Design: characteristics, constraints, and capability of a space system to meet the needs and objectives of a program


Apollo Mission Design


Artemis Conceptual Mission Design

Launch, Ascent, Staging Orbit


ApolloSingle Launch Direct
ArchitectureDaily Launch Opp
(1 of 2 TLI)26° Range Launch
AzimuthGround, Ship, Airborne
Communication

Performance3rd Stage Engine1 x J-2Height363' (110.6 m)B1 Lunar Payload48.6 metric torLEO Staging Orbit100 nmi

Saturn V

CompositionCore Diameter27.6' (8.4 m)Engines4 x RS-25Boosters2 x 5 SegmentMax Thrust (lbf)8.8MMax Thrust (kN)39,100Launch PadKSC LC-39B

B1 Performance

Upper StageICPSHeight322' (98.1 m)B1 Lunar Payload>26 metric tonsLEO Staging Orbit100 x 1450 nmi

B1B Performance

Upper StageEUSHeight364' (110.9 m)B1B Lunar Payload~37 metric tonsB1B Staging Orbit100 nmi

Artemis
Distributed Launches w/
Aggregation Architecture
B1 ~1/2 month, 1 TLI opp
B1B Daily, 2 of 2 TLI opp
~36° Range Launch
Azimuth

Ground, TDRSS Communication

Advancements in space-based communication provide greater flexibility in launch range and mission opportunities

SLS B1

Transit and Mission Duration

Apollo

3 crew members

~39 days consumable

Fuel Cell Powered (~14day max lifetime)

Direct lunar transit of 3-4 days

Command Module 10'7" (3.2m) Height 12'10" (3.9 m) Diameter 210ft³ (5.9m³) Habitable Volume 12,392 lbm (5,621 kg) Launch Weight 10,977 lbm (4,979 kg) Landing Weight

Service Module

22'7" (6.9 m) 12'10" (3.9 m) Launch Weight 51,258 lbm (23,250 kg)

Performance

Height

Diameter

3 Crew 70 ft³/person (2.0m³) Habitable Volume 14 days/3 crew **Mission Support** Power Source Fuel Cells

10'10" (3.3 m)

314ft³ (8.9m³⁾

22,900 lbm (10,387 kg)

34,085 lbm (15,461 kg)

20,400 lbm (9,253 kg)

16'5" (5 m)

16' (4.9 m)

13'5" (4.1 m)

Crew Module

Height Diameter Habitable Volume Launch Weight Landing Weight

Service Module

Height Diameter Launch Weight

Performance

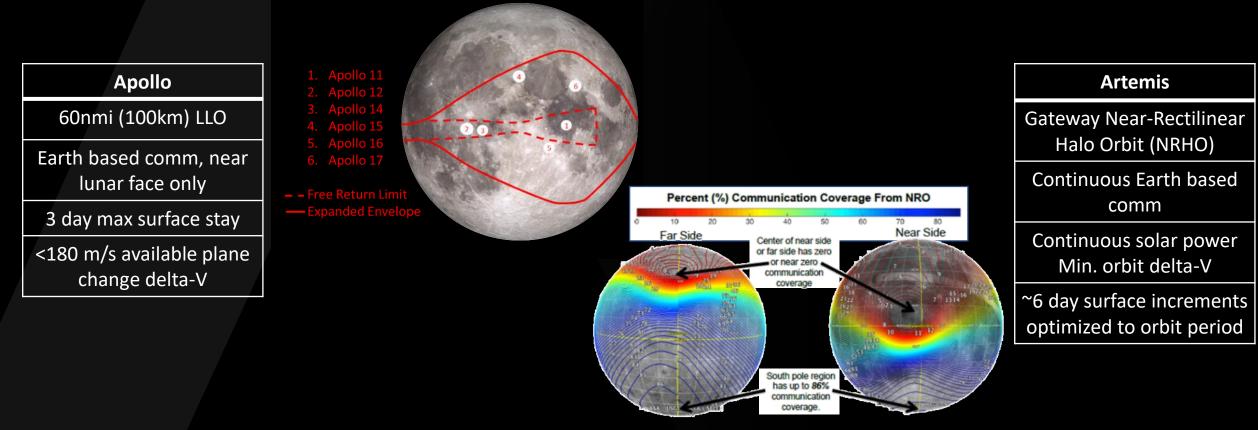
Crew 4 Habitable Volume 78.5 ft³/person (2.2m³) 21 days/4 crew **Mission Support** Power Source Solar Arrays

Artemis

4 crew members

~84 days consumables

+ Gateway w/ resupply


Solar Array Powered

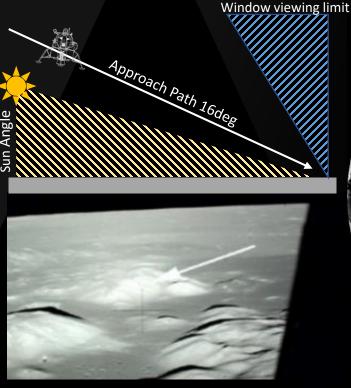
Variable lunar transit 5-14 days for phasing

Transition from minimal mission durations to long-duration and flexibility in cis-lunar operations

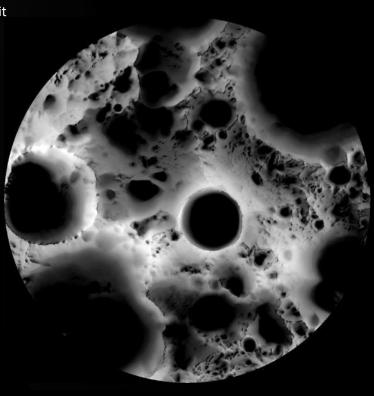
Lunar Orbit Staging

Enable polar landing opportunities and architectural evolvability through multi-mission staging

Lunar Surface Access


Apollo

Manual Piloting and Hazard Avoidance


16° Approach Angle 7-23° sun angle constraint

> Solar illumination 2 weeks/month

Landing Site Availability 1 day/month

Example of Zero Phase Angle hazard washout from sun angle

Lunar South Pole solar illumination map

Automated/Sensor Supported Piloting Max polar sun angle 5° Solar illumination up to 92% of the year South Pole Landing Site

Artemis

Available Weekly

Mitigation of landing site constraints through advanced automation and technology to enable South Pole opportunity

Earth Return, Landing, and Recovery

Increase mission opportunities and maximize crew safety through anytime US coastal recovery

Human Lunar Mission Design: Then & Now

Apollo

Artemis

Mission optimized to minimize performance demand and achieve surface exploration

Mission optimized to enable polar surface mission and sustainable exploration

