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Topics for Today

• Navigation Algorithm Architecture Overview
• Event Detection during Interplanetary Cruise
• Application to Entry, Descent, and Landing

Hierarchical Navigation Algorithms
In Support of Mars Exploration



BACKGROUND

• Traditional navigation algorithms use batch least-squares 
estimation (OD) or extended Kalman filters.
– LSE optimize over long data arcs and are not easily adapted 

to real-time operation.

– EKFs often perform poorly outside the “tuned” region

• Environment changes are resolved by humans “in-the-
loop” with an ad hoc and non real-time process relying 
heavily on:
– Navigator Experience
– Trial and Error Adaptation

• Our investigations led us to consider adaptive estimation.



3RD GENERATION “DREAM VEHICLE”
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WHY ADAPTIVE ESTIMATION?

• There is no systematic approach for selecting the 
operational navigation filter parameters.
– Costly filter tuning in terms of manpower and time

• There is a need for greater state estimation accuracies 
with less data (of  potentially lower quality).
– Low-cost, high-performance

• There is a need to detect environmental and spacecraft 
changes and to take appropriate action.
– Intelligent systems

• Desire to increase robustness and reliability.
– Mission safety and success



WHAT IS SUCCESSFUL ADAPTIVE ESTIMATION?

• Successful adaptive navigation algorithms:
– Identify the nature of changes in the spacecraft 

environment that cause it to deviate from the expected.
– Tune the filter and model parameters corresponding to 

these changes to resume optimal tracking.

• The adaptive algorithm must perform these tasks with a 
general structure based upon numerical analysis of the 
available data.
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HIERARCHICAL MIXTURE-OF-EXPERTS 

• Each module is an expert network— a Kalman filter.
• The function z is the input vector—the measurements.
• The function yi is the ith module output—state estimate and 

error covariance.
• The function gi is the activation of the ith output neuron of 

the gating network.
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GATING NETWORKS
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• The ith filter is associated with a GN neuron with synaptic 
weight ai,k

• The GN calculates gating weights, gi, by mapping synaptic 
weights via the softmax operation

• Why softmax? 
– Differentiable function that preserves rank order
– Generalization of a “winner-takes-all” operation
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SYNAPTIC WEIGHT UPDATE FORMULA

• Conditional density 
function

• Distribution of the bank
– The g’s may be 

interpreted as apriori
probabilities

• Learning is achieved by 
maximizing log-likelihood l
with respect to g(a)

• Instantaneous a posteriori
probability injects filter 
performance into learning

• Synaptic weights update
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MULTIPLE LEVELS OF MODULARITY

• Filters are collected into banks to represent macromode
environment changes

• Within each bank, individual filter realizations represent 
fine, micromode, environment changes

• “Best” filter in HME has the highest bank-level gji,k in the 
bank with the highest top-level gi,k

• Optimal filter configuration can be “masked” when 
containing bank does not receive highest top-level g

• Method desired for identifying nominal environment 
without bank “masking”: Operational Control bank
– The operational filter parameters and model reflect the 

mission nominal environment
– The top-level GN identifies the nominal environment by 

selecting the control bank



MULTIPLE-LEVEL HME ARCHITECTURE
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APPLICATIONS

• Interplanetary cruise orbit determination
– Detecting small discrete disturbances
– Detecting slow continuous disturbances

• Mars atmospheric entry
– Processing IMU as a “measurement”
– Detecting atmospheric density variations



WHAT IS ORBIT DETERMINATION?

• Orbit Determination (OD): The process of describing 
the past, present, or predicted position of a satellite in 
terms of the orbital parameters.



THE DEEP SPACE NETWORK

• Interplanetary tracking is accomplished by 34 and 70m 
dishes

• DSN dish time is expensive and in high demand
• The primary data type is Doppler with a large number of 

supporting range measurements



SOLAR RADIATION PRESSURE MODELING & 
SMALL FORCE DETECTION
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SRP MODEL SELECTION

• The process of tuning the operational filter during the Mars 
Pathfinder mission was very time-consuming for the 
navigation team.

• One of the main difficulties was choosing solar flux 
parameters.

• We considered this situation using the mixture-of-experts 
architecture.

MPF navigation team best SRP model
Spacecraft Part Component Type Active
Solar array Flat plate Entire cruise
Launch vehicle Adapter Flat plate Entire cruise
Heat rejection system Cylinder Entire cruise
Backshell 1 Cylinder Before 4/16/97
Backshell 2 Flat plate After 4/16/97



GENERAL HME CONFIGURATION: 5 BANKS

• Bank 0: Impulsive Velocity Macromode
– Filter and model parameters

• Bank 1: SRP Environment Macromode
– Filter and model parameters

• Bank 2: Doppler Noise Macromode
– Filter parameters

• Bank 3: Range Noise Macromode
– Filter parameters

• Bank 4: Experimental Control (Nominal Operation)



PROCESSING DSN DATA FROM MPF MISSION

• MPF Cruise from TCM-2 to 
TCM-3
– Feb. 4 to Apr. 18, 1997
– 1612 Doppler and 3144 range 

observations
• Unmodeled Impulsive 

Maneuver Identification
– March 25 maneuver omitted 

from filter models
• SRP Environment Change 

Identification
– MPF model 4 assumed 

operational model



IMPULSIVE MANEUVER IDENTIFICATION
• The following small correction (0.7 mm/sec) was 

performed on March 25, 1997
• ∆V = [0.4449 0.07304 0.5301] mm/sec

• The modeled Doppler noise = 0.2 mm/sec

• This maneuver has been omitted from all filter dynamic 
models to simulate an unmodeled impulsive event in 
the real mission data.

• Successful experiment will result in Control receiving 
highest top-level weight until March 25 when a switch to 
the Impulse macromode occurs.



IMPULSE HME CONFIGURATION

Bank # Filter # Impulse SRP R
0 (0,0) Feb. 4 * *
0 (1,0) Feb. 22 * *
0 (2,0) Mar. 12 * *
0 (3,0) Mar. 30 * *
1 (0,1) --- MPF 2 *
1 (1,1) --- MPF 4 *
2 (0,2) --- * X3
2 (1,2) --- * X9
3 (0,3) --- * *

Impulse

SRP

Noise

Control



IMPULSE IDENTIFICATION TOP-LEVEL
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IMPULSE IDENTIFICATION BANK-LEVEL
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CHANGES IN SRP ENVIRONMENT

• Changes in SRP environment represent continuous and 
low-level changes in spacecraft dynamics

• Although not necessarily critical, it is important to 
identify SRP as a source of OD error.

• MPF model 4 is assumed to be operational model and 
the GA optimized model is included in the SRP 
identification macromode.

• The March 25 maneuver is omitted from all models to 
examine ability to distinguish between discrete and 
continuous model changes.



OPTIMAL SRP MODEL

Preliminary Best from GA w/ Single Point Crossover 
(f = .29 after 20 iterations) 

Note: There are a few transients/outliers not seen at this scale
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SRP HME CONFIGURATION

Bank # Filter # Impulse SRP R 
0 (0,0) Feb. 4 MPF 4 * 
0 (1,0) Feb. 22 MPF 4 * 
0 (2,0) Mar. 12 MPF 4 * 
0 (3,0) Mar. 30 MPF 4 * 
1 (0,1) --- MPF 2 * 
1 (1,1) --- Ely * 
2 (0,2) --- MPF 4 X3 
2 (1,2) --- MPF 4 X9 
3 (0,3) --- MPF 4 * 
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SRP IDENTIFICATION TOP-LEVEL
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SRP IDENTIFICATION BANK-LEVEL
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SUMMARY: HME OD PERFORMANCE

• The top-level GN correctly identified the first 
macromode change in all cases.
– False detections avoided at test impulse times.
– Decisions based upon residual signatures near level of 

measurement noise.
– Distinguished continual and discrete dynamic changes.

• Bank-level GN identified appropriate micromodes in 
most cases, but work remains in placement of test 
impulse times.

• Concept proven in simulation with actual DSN 
interplanetary cruise tracking data.



APPLICATION TO MARS ENTRY

• Objective: Develop entry navigation flight software to support 
actively guided Mars entry.

• To date no Mars lander has employed active guidance with real 
time, onboard state estimation. 

• Uncertainty in landing can be measured in hundreds of Kms.

• Future missions will require ability to land within a few Kms or 
less of the intended point—precision landing.

• The part of the entry before parachute deployment is the most 
challenging, as being dynamically intensive but poor in 
measurements.





UT INVESTIGATIONS
• Develop a precision entry navigation filter to process IMU 

accelerometer data as an “external” measurement type
• Develop concepts for 3rd generation (precision landing) entry 

systems based on utilizing mixture-of-experts architecture 
processing inertial and relative measurements in real-time.

Safe landing 
target

Worst case 
landing

Desired 
region

11stst gen.gen.

33rdrd gen.gen.
22ndnd gen.gen.



ENTRY DYNAMICS VERIFICATION

• “Truth" trajectory generated with SORT, a NASA JSC entry 
guidance and navigation simulator.

• Assume the density, CL, and CD are precisely known.

• The differences in the trajectories due to different 
numerical integration algorithms and gravity models 

– A J2 model is used in the filter dynamics model
– NASA simulations utilize higher-order gravity models

• EKF filter residuals can be attributed almost entirely to 
uncertainty in the density and lift/drag models, hence there 
is a good possibility that the HME filter bank architecture 
can be used to detect optimal model parameters.



FLIGHT MODEL EQUATIONS

vv[ ] [ ] [ ] [ ]ϕϕϕ cossin

)(

3211
www

I
w

I
w

I

III

II

LD eeeaeaωa

rgav
vr

+−+−×+×=

+=
=

&&&&

&

&

2
r

rrw

V
vvω
&×

=

• These equations are used in a 9-state EKF.
• Performance has proven better so far than with a 6-

state EKF (position and velocity only).



POSITION DIFFERENCE



FILTERING VERSUS DEAD-RECKONING

• Single filter tested against dead-reckoning, including a 
simulated loss of measurement input, with and without 
eventual reacquisition.

• The IMU fails at t=225 seconds just before a bank 
maneuver.



DEAD-RECKONING VERSUS ACTIVE FILTERING



ACCELERATION ERRORS FOR IMU RECOVERY



IMU RE-ACQUISITION

• Dead-reckoning:
– Robustness to the lack of knowledge of environmental 

parameters is high since the process is not model dependent.

– This is an open-loop process, hence estimation errors will 
always continue to grow without bound.

– Cannot effectively react to IMU data loss since there is no way 
to reduce the state errors existing at the time of data 
reaquisition.

• Active Kalman filtering
– Can lead to accurate recovery of the state estimate after IMU 

data loss and subsequent reacquisition.



ATMOSPHERIC DENSITY PROFILE

• The most likely use of the filter bank is in regulating filter 
banks parameterizing the atmosphere model. 

• A two-layer exponential model is used as the base for each 
filter model (Tauber & et al.).

• Different models are created by varying the value of ρ0 at the 
bottom of the layer.
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ATMOSPHERIC DENSITY PROFILE

• The value of ρ0 is multiplied in each filter by the following 
factors.

• The color indicates which filters are represented on the 
following plots.

Filter 1 2 3 4 5 6

Color blue red purple green gray light 
blue

Coeff. 1 0.5 0.1 0.3 0.7 0.2
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GATING WEIGHTS EVOLUTION
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SUMMARY: HME EDL PERFORMANCE (1)

• Application of a hierarchical mixture of experts architecture 
to martian entry navigation during the highly dynamic 
hypersonic pre-parachute deploy phase was investigated.

• Proposed to utilize an approach that includes processing 
accelerometer and gyro data in an extended Kalman filter 
as if they were external measurements.

• A dynamics model suitable for use in an extended Kalman
filter processing accelerometer measurements was 
developed and demonstrated to be an accurate 
representation of the entry dynamics in comparison with 
high-fidelity NASA simulations.

• Preliminary filtering results indicate that the entry 
navigation problem may be tractable using IMU 
accelerometer observations as measurements in an HME 
architecture.



SUMMARY: HME EDL PERFORMANCE (2)

• In the event of intermittent IMU failure (that is, a failure to 
provide measurements for an extended period), an 
extended Kalman filter-based navigation algorithm is more 
robust and can, in fact, recover from the IMU data drop-
out.

• Numerical experiments aimed at testing the ability of the 
HME to detect atmospheric parameters also provide 
positive indicators.
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with Gating Networks for Mars Entry Precision Landing,”
AIAA Guidance, Navigation, and Control Conference and 
Exhibit, Providence, RI, August 2004.
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• Employing genetic algorithms to search for optimal 
parameters:

– Chaer, W. S., and Bishop, R. H., “Adaptive Kalman Filtering 
with Genetic Algorithms,” Advances in the Astronautical
Sciences, eds. R. J. Proulx et al., Vol. 89, pp. 141-155, 
1995. 

– Ely, T. A., Bishop, R. H., and Crain, T. P., “Adaptive 
Interplanetary Navigation using Genetic Algorithms,” AAS 
00-271, Richard H. Battin Astrodynamics Symposium, 
College Station, TX, March 2000 (A00-45651 12-13), San 
Diego, CA, Univelt, Inc. 2000, pp. 147-160. 

• Employing early approaches (Mehra and Magill):
– Burkhart, P. D. and Bishop, R. H., “Adaptive Orbit 

Determination for Interplanetary Spacecraft” AAS/AIAA 
Spaceflight Mechanics Meeting, AAS 96-152, Austin, TX, 
1996.
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