Dynamics and Control of Formation Flying Satellites

NASA Lunch \& Learn Talk August 19, 2003

by
S. R. Vadali

- Formation vs. Constellation
- Introduction to Orbital Mechanics
- Perturbations and Mean Orbital Elements
- Hill's Equations
- Initial Conditions
- A Fuel Balancing Control Concept
- Formation Establishment and Maintenance
- High-Eccentricity Orbits
- Work in Progress
- Concluding Remarks

Global Positioning System (GPS) Constellation

Texas A\&M University - Dept. of Aerospace Engineering

Formation Flying: Relative Orbits

Texas A\&M University - Dept. of Aerospace Engineering

Distributed Space Systems- Enabling New Earth \& Space Science (NASA)

Co-observation

Multi-point observation

Large
Interferometric
Space
Antennas

The Black Hole Imager:

Micro Arcsecond X-ray Imaging ${ }^{\text {Mission }}$

 (IVIVAXXIVI) Observaiory Concept32 optics ($300 \times 10 \mathrm{~cm}$) held in phase with 600 m baseline to give
0.3 micro arc-sec

34 Formation Flying Spacecraft

System is adjustable on orbit to achieve larger baselines

Black hole image!

Landsat7/EO-1 Formation Flying

EO-1 Following Landsat-7 satellite in orbit

Orbit Mechanics of EO-1 Formation Flying

450 km in-track and 50 m Radial Separation.
Differential Drag and Thrust Used for Formation Maintenance

Texas A\&M University - Dept. of Aerospace Engineering

Motivation for Research

Air Force: Sparse Aperture Radar.

- NASA and ESA:

Terrestrial Planet Finder (TPF)
Stellar Imager (SI)
LISA, MMS, Maxim

- Swarms of small satellites flying in precise formations will cooperate to form distributed aperture systems.
o Determine Fuel efficient relative orbits. Do not fight Kepler!!!
- Effect of J_{2} ?
- How to establish and reconfigure a formation?
- Balance the fuel consumption for each satellite and minimize the total fuel.

Introduction to Orbital Mechanics-1

-Formation Flying: Satellites close to each other but not necessarily in the same plane.

Introduction to Orbital Mechanics-2

Orbital Elements: Five of the six elements remain constant for the 2-Body Problem.

- Variations exist in the definition of the elements.

Mean anomaly: $\quad M: \dot{M}=n=\sqrt{\frac{\mu}{a^{3}}}$

Orbital Mechapics-3

Ways to setup a formation:

- Inclination difference.
- Node difference.
- Combination of the two.

Inclination Difference

Node Difference

Orbital Mechanics-4

- J_Perturtcetionit
- Gravitational Potential: $\quad \Phi(r, \phi)=-\frac{\mu}{r}\left[1+\sum_{k=2}^{\infty} J_{k}\left(\frac{R_{e}}{r}\right)^{k} P_{k}(\sin \phi)\right]$
- J_{2} is a source of a major perturbation on Low-Earth satellites .
- $\left.\Phi(r, \phi)\right|_{J_{2}}=-\frac{\mu J_{2} R_{e}^{2}}{2 r^{3}}\left(3 \sin \phi^{2}-1\right)$

$$
J_{2}=1.082629 \times 10^{-3}
$$

Equatorial Bulge

Potential of an Aspherical body

Orbital Mechanics-5

J_{2} induces short and long periodic oscillations and secular Drifts in some of the orbital elements

- Secular Drift Rates
- Node:

$$
\begin{array}{r}
\dot{\Omega}=-1.5 J_{2}\left(\frac{R_{e}}{p}\right)^{2} n \cos i \\
\dot{\omega}=0.75 J_{2}\left(\frac{R_{e}}{p}\right)^{2} n\left(5 \cos ^{2} i-1\right)
\end{array}
$$

- Perigee:
- Mean anomaly: $\dot{M}=n+0.75 J_{2} \sqrt{1-e^{2}}\left(\frac{R_{e}}{p}\right)^{2} n\left(3 \cos ^{2} i-1\right)$

Drift rates depend on mean a, e, and i

Orbital Mechapics-6

Analytical theories exist for obtaining Osculating elements from the Mean elements.

- Brouwer (1959)
- If two satellites are to stay close, their periods must be the same (2-Body).
- Under J_{2} the drift rates must match.
- Requirements:

$$
\begin{aligned}
& \dot{\Omega}_{1}=\dot{\Omega}_{2} \\
& \dot{\omega}_{1}=\dot{\omega}_{2} \\
& \dot{M}_{1}=\dot{M}_{2}
\end{aligned}
$$

Orbital Meshapics-7

For small differences in a, e, and i
$\left[\begin{array}{ccc}\frac{\partial \dot{\Omega}}{\partial a} & \frac{\partial \dot{\Omega}}{\partial e} & \frac{\partial \dot{\Omega}}{\partial i} \\ \frac{\partial \dot{\omega}}{\partial a} & \frac{\partial \dot{\omega}}{\partial e} & \frac{\partial \dot{\omega}}{\partial i} \\ \frac{\partial \dot{M}}{\partial a} & \frac{\partial \dot{M}}{\partial e} & \frac{\partial \dot{M}}{\partial i}\end{array}\right]\left[\begin{array}{c}\delta a \\ \delta e \\ \delta i\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

- Except for trivial cases, all the three equations above cannot be satisfied with non-zero a, e, and i elemental differences.
o Need to relax one or more of the requirements,

Orbital Mechanics-8

J_{2}-Invariant Relative Orbits (Schaub and Alfriend, 2001).

$$
\left[\begin{array}{ccc}
\frac{\partial \dot{\Omega}}{\partial a} & \frac{\partial \dot{\Omega}}{\partial e} & \frac{\partial \dot{\Omega}}{\partial i} \\
\frac{\partial(\dot{\omega}+M)}{\partial a} & \frac{\partial(\dot{\omega}+M \dot{M})}{\partial e} & \frac{\partial(\dot{\omega}+\dot{M})}{\partial i}
\end{array}\right]\left[\begin{array}{l}
\delta a \\
\delta e \\
\delta i
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

This condition can sometimes lead to large relative orbits (For Polar Reference Orbits) or orbits that may not be desirable.

Orbital Mechapics-9

σ_{2}-Invariant Relative Orbits (No Thrust Required)

TABLE I
Master satellite orbit elements.

Desired Average Orbit Elements	Value	Units
a	7153	km
e	0.05	
i	48 or 88	deg
h	0.0	deg
g	30.0	deg
l	0.0	deg

(a) Initial relative orbit setup in osculating elements

(b) Initial relative orbit setup in mean elements

Texas A\&M University - Dept. of Aerospace Engineering

Orbital Mechanjcs-10

Geometric Solution in terms of small orbital element differences

$$
\begin{aligned}
& y=a_{c}\left(\delta \theta+\delta \Omega \cos i_{c}\right) ; \quad \theta=\text { orbit latitude angle }=\omega+f \\
& z=a_{c}\left(\delta i \sin \theta_{c}-\sin i_{c} \delta \Omega \cos \theta_{c}\right)
\end{aligned}
$$

- For small eccentricity

$$
\begin{aligned}
& \theta=\omega+M+2 e \sin M \text { and } \\
& \delta \theta=\delta \omega+\delta M+2 \delta e \sin M_{c}+2 e_{c} \cos M_{c} \delta M
\end{aligned}
$$

- A condition for No Along-track Drift (RateMatching) is:

$$
\delta \omega+\delta M+\delta \Omega \cos i_{c}=0
$$

Remarks: Our Approach

- The $\dot{\Omega}_{0}=\dot{\Omega}_{1}$ and $\dot{\omega}_{0}+\dot{M}_{0}=\dot{\omega}_{1}+\dot{M}_{1}$ constraints result in a large relative orbit for small eccentricity and high inclination of the Chief's orbit. ($\mathrm{J}_{2}-$ Invariant Orbits)
- Even if the inclination is small, the shape of the relative orbit may not be desirable.

Use the no along-track drift condition (Rate-Matching) only.

- Setup the desired initial conditions and use as little fuel as possible to fight the perturbations.

End of Phase-1

Hill-Clohessey-Wiltshire Equations-1

Eccentric reference orbit relative motion dynamics
(2-Body) :

$$
\begin{aligned}
& \ddot{x}-2 \dot{\theta} \dot{y}-\ddot{\theta} y-\dot{\theta}^{2} x=-\frac{\mu\left(r_{c}+x\right)}{\left[\left(r_{c}+x\right)^{2}+y^{2}+z^{2}\right]^{3 / 2}}+\frac{\mu}{r_{c}^{2}} \\
& \ddot{y}+2 \dot{\theta} \dot{x}+\ddot{\theta} x-\dot{\theta}^{2} y=-\frac{\mu y}{\left[\left(r_{c}+x\right)^{2}+y^{2}+z^{2}\right]^{3 / 2}} \\
& \ddot{z}=-\frac{\mu z}{\left[\left(r_{c}+x\right)^{2}+y^{2}+z^{2}\right]^{3 / 2}}
\end{aligned}
$$

Assume zero-eccentricity and linearize the equations:

Hill-Clohessey-Wiltshire Equations-2

HCW Equations:

$$
\begin{aligned}
& \ddot{x}-2 n_{c} \dot{y}-3 n_{c}^{2} x=0 \\
& \ddot{y}+2 n_{c} \dot{x}=0 \\
& \ddot{z}+n_{c}^{2} z=0
\end{aligned}
$$

where $n_{c}=\sqrt{\frac{\mu}{a_{c}^{3}}}$.

Velocity
vector

Along orbit normal

Z
Bounded Along-Track Motion Condition

$$
\dot{y}+2 n_{c} x=0
$$

Bounded HCW Solutions

$$
\begin{aligned}
& x=\frac{c_{1}}{2} \sin \left(n_{0} t+\alpha\right) \\
& y=c_{1} \cos \left(n_{0} t+\alpha\right)+c_{3} \\
& z=c_{2} \sin \left(n_{0} t+\alpha+\varphi\right)
\end{aligned}
$$

- Projected Circular Re. Orbit.

$$
\begin{aligned}
& c_{1}=c_{2}=\rho \\
& c_{3}=\varphi=0 \\
& y^{2}+z^{2}=\rho^{2}
\end{aligned}
$$

General Circular Re. Orbit.

$$
\begin{aligned}
& c_{1}=\rho \quad c_{2}=\frac{\sqrt{3}}{2} \rho \\
& c_{3}=\varphi=0 \\
& x^{2}+y^{2}+z^{2}=\rho^{2}
\end{aligned}
$$

PCO and GCO Relative Orbits

Projected Circular Orbit (PCO) General Circular Orbit (GCO)

Texas A\&M University - Dept. of Aerospace Engineering

Initial Conditions in terms of Mean Element Differences:

General Circular Relative Orbit.

$$
\begin{aligned}
& \frac{\delta a}{a_{c}}=-\frac{J_{2}}{2}\left(\frac{R_{e}}{a_{c}}\right)^{2} \frac{3 \eta_{c}+4}{\eta_{c}^{4}}\left[\left(1-3 \cos ^{2} i_{c}\right) \frac{e_{c} \delta e}{\eta^{2}}+\sin 2 i_{c} \delta i\right] \\
& \eta_{c}=\sqrt{1-e_{c}^{2}} \quad \text { Semi-major axis Difference } \\
& \delta e=-0.5 c_{1} \sin \left(\omega_{c}+\alpha\right) / a_{c} \quad \text { Eccentricity Difference } \\
& \delta i=c_{2} \cos (\alpha+\varphi) / a_{c} \quad \text { Inclination Difference } \\
& \delta \Omega=-c_{2} \frac{\sin (\alpha+\varphi)}{\sin i_{c}} / a_{c} \quad \text { Node Difference } \\
& \delta \omega=\left(\left[c_{2} \cot i_{c} \sin (\alpha+\varphi)-\frac{c_{1}}{2 e_{c}} \cos \left(\omega_{c}+\alpha\right)\right]+c_{3}\right) / a_{c} \\
& \text { Perigee Difference }
\end{aligned}
$$

$\delta M=\frac{c_{1}}{2 e_{c}} \cos \left(\omega_{c}+\alpha\right) / a_{c} \quad$ Mean Anomaly Difference

Simulation Model

Equations of motion for one satellite

$$
\ddot{\mathbf{r}}=-\phi_{r}+\mathbf{u} \quad \phi_{r}=\frac{\mu}{r^{3}} \mathbf{r}+\frac{J_{2} \mu R_{e}^{2}}{2}\left[\frac{6 z}{r^{n}} \hat{\mathbf{n}}+\left(\frac{3}{r^{5}}-\frac{15 z^{2}}{r^{7}}\right) \mathbf{r}\right]
$$

Inertial Relative Displacement

$$
\delta r=r_{1}-r_{0}
$$

Rotating frame coordinates

$$
\delta x=\frac{\delta \mathbf{r}^{T} \mathbf{r}_{0}}{r_{0}} \quad \delta y=\frac{\delta \mathbf{r}^{T}\left(\mathbf{H}_{0} \times \mathbf{r}_{0}\right)}{\left|\mathbf{H}_{0} \times \mathbf{r}_{0}\right|} \quad \delta z=\frac{\delta \mathbf{r}^{T} \mathbf{H}_{0}}{H_{0}}
$$

- Initial conditions: Convert Mean elements to Osculating elements and then find position and velocity.

Hill's Initial Conditions with Rate-Matching

Chicfiscoribitis eccentric: e=0.005
Formation established using inclination difference only. $\alpha_{0}=0^{\circ}$

Relative Orbits in the $y-z$ plane, (2 orbits shown)

Drift Patterns for Various Initial Conditions

Fuel Requirements for a Circular Projection Relative Orbit Formation

Strapsinot When the chief is

Sat \#1and 4 have $\max |\delta i|$ and $\delta \Omega$ zero

Sat \#3 and 6 have $\max |\delta \Omega|$ but zero δi

- 1 and 4 will spend max fuel; 3 and 6 will spend \min fuel to fight J_{2}.
 at the equator. Pattern
repeats every orbit of the Chief

Fuel Balancing Control Concept

Snapshot when the chief is at the equator.
-Balance the fuel consumption over a certain period by rotating all the deputies by an additional rate $\dot{\alpha}$

Modified Hill's Equations to Account for J_{2}

$$
\begin{array}{ll}
\ddot{x}-2 \bar{n}_{c} \dot{y}-3 \bar{n}_{c}^{2} x=u_{x} & \text { Assume no in-track } \\
\ddot{y}+2 \bar{n}_{c} \dot{y}=u_{y} & \text { drift condition } \\
\ddot{z}+\bar{n}_{c}^{2} z=u_{z}+2 A \bar{n}_{c} \cos \alpha_{0} \sin \theta_{c} \\
A=\frac{3}{2} \rho J_{2} n_{c}\left(\frac{R_{e}}{a_{c}}\right)^{2} \sin ^{2} i & \bar{n}_{c}=\dot{\omega}_{c}+\dot{M}_{c}
\end{array}
$$

Analytical solution

$$
z=a_{c}\left(\delta i \sin \theta_{c}-\sin i_{c} \delta \Omega \cos \theta_{c}\right)
$$

The near-resonance in the z-axis is detuned by $\bar{n} \Rightarrow \bar{n}+\dot{\alpha}$

Balanced Formation Control Saves Fuel

Ideal Trajectory

$$
\begin{aligned}
& x_{R}=0.5 \rho \sin (\theta+\alpha) \\
& y_{R}=\rho \cos (\theta+\alpha) \\
& z_{R}=\rho \sin (\theta+\alpha)
\end{aligned}
$$

Optimize over time and an infinite number of satellites

$$
\begin{aligned}
& J= \frac{1}{4 \bar{n} \pi^{2}} \int_{0}^{2} \int_{0}^{2}\left(u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right) d \theta d \alpha_{0} \\
& J_{\text {opt }}=\frac{2}{3} A^{2} \bar{n} \quad \dot{\alpha}_{\text {opt }}=-\frac{A}{3 \rho} \quad J_{\dot{\alpha}=0}=A^{2} \bar{n}
\end{aligned}
$$

Analytical Results

Nonlinear Simulation Results

Texas A\&M University - Dept. of Aerospace Engineering

Nonlinear Simulation Results

Orbit iftaili over one year(8 Satellites)

Disturbance Accommodation

- Do not cancel J_{2} and Eccentricity induced periodic disturbances above the orbit rate.
- Utilize Filter States
- No y-bias filter
- LQR Design
- Transform control to ECI and propagate orbits in ECI frame.
- The Chief is not controlled.

End of Phase-3

$$
\begin{aligned}
& \dot{z}_{0 x}=u_{x} \\
& \ddot{z}_{2 x}+\left(2 \bar{n}_{0}\right)^{2} z_{2 x}=u_{x} \\
& \ddot{z}_{3 x}+\left(3 \bar{n}_{0}\right)^{2} z_{2 x}=u_{x} \\
& \ddot{z}_{2 y}+\left(2 \bar{n}_{0}\right)^{2} z_{2 y}=u_{y} \\
& \ddot{z}_{3 y}+\left(3 \bar{n}_{0}\right)^{2} z_{3 y}=u_{y} \\
& \dot{z}_{0 z}=u_{z} \\
& \ddot{z}_{2 z}+\left(2 \bar{n}_{0}\right)^{2} z_{2 z}=u_{z} \\
& \ddot{z}_{3 z}+\left(3 \bar{n}_{0}\right)^{2} z_{3 z}=u_{z}
\end{aligned}
$$

Formation Establishment and Reconfiguration

- Changing the Size and Shape of the Relative Orbit.
- Can be Achieved by a 2-Impulse Transfer.
- Analytical solutions match numerically optimized Results.
- Gauss' Equations Utilized for Determining Impulse magnitudes, directions, and application times.
- Assumption: The out-of-plane cost dominates the in-plane cost. Node
 change best done at the poles and inclination at the equator crossings.

Formation Establishment

1 km PCO
Established with $\alpha_{0}=45^{\circ}$

1 km GCO

Established with $\alpha_{0}=90^{\circ}$

Formation Reconfiguration

$1 \mathrm{~km}, \alpha_{0}=0^{\circ} \mathrm{PCO}$ to 2 $\mathrm{km}, \alpha_{0}=0^{\circ} \mathrm{PCO}$

$1 \mathrm{~km}, \alpha_{0}=0^{\circ} \mathrm{PCO}$ to 2 km , $\alpha_{0}=90^{\circ} \mathrm{PCO}$

Chief is at the Asc. Node at the Beginning.

Reconfiguration Cost

Cost vs. Final Phase Angle

Hins prot helps in solving the slot assignment problem. The initial and final phase angles should be the same for fuel optimality for any initial phase angle.

Optimal Assignment

Ohjectives.

(i) Minimize Overall Fuel Consumption
(ii) Homogenize Individual Fuel Consumption

$\operatorname{PCO} \rho_{i}=1$ to $\rho_{f}=2$

$$
\operatorname{GCO} \rho_{i}=1 \text { to } \rho_{f}=2
$$

Texas A\&M University - Dept. of Aerospace Engineeringd of Phase-4

Relative Motion on a Unit Sphere

Relative Motion Solution on the Unit Sphere

$$
\begin{aligned}
\Delta x= & -1+c^{2}\left(i_{0} / 2\right) c^{2}\left(i_{1} / 2\right) c(\Delta \theta+\Delta \Omega)+s^{2}\left(i_{0} / 2\right) s^{2}\left(i_{1} / 2\right) c(\Delta \theta-\Delta \Omega) \\
& +s^{2}\left(i_{0} / 2\right) c^{2}\left(i_{1} / 2\right) c\left(2 \theta_{0}+\Delta \theta+\Delta \Omega\right)+c^{2}\left(i_{0} / 2\right) s^{2}\left(i_{1} / 2\right) c\left(2 \theta_{0}+\Delta \theta-\Delta \Omega\right) \\
& +1 / 2 s\left(i_{0}\right) s\left(i_{1}\right)\left[c(\Delta \theta)-c\left(2 \theta_{0}+\Delta \theta\right)\right] \\
\Delta y= & c^{2}\left(i_{0} / 2\right) c^{2}\left(i_{1} / 2\right) s(\Delta \theta+\Delta \Omega)+s^{2}\left(i_{0} / 2\right) s^{2}\left(i_{1} / 2\right) s(\Delta \theta-\Delta \Omega) \\
& -s^{2}\left(i_{0} / 2\right) c^{2}\left(i_{1} / 2\right) s\left(2 \theta_{0}+\Delta \theta+\Delta \Omega\right)-c^{2}\left(i_{0} / 2\right) s^{2}\left(i_{1} / 2\right) s\left(2 \theta_{0}+\Delta \theta-\Delta \Omega\right) \\
& +1 / 2 s\left(i_{0}\right) s\left(i_{1}\right)\left[s(\Delta \theta)+s\left(2 \theta_{0}+\Delta \theta\right)\right] \\
\Delta z= & -s\left(i_{0}\right) s(\Delta \Omega) c\left(\theta_{1}\right)-\left[s\left(i_{0}\right) c\left(i_{1}\right) c(\Delta \Omega)-c\left(i_{0}\right) s\left(i_{1}\right)\right] s\left(\theta_{1}\right) \\
& \text { Valid for Large Angles }
\end{aligned}
$$

Analytical Solution using Mean Orbital Elements-1

Mean rates are constant.

$$
\begin{aligned}
& \theta_{j}=\omega_{j}+M_{j}+2 e_{j} \sin \left(M_{j}\right)+5 / 4 e_{j}^{2} \sin \left(2 M_{j}\right)+. . \\
& \Omega_{j}=\Omega_{j}(0)+\dot{\Omega}_{j} t \quad \dot{\Omega}_{j}=-1.5 J_{2}\left(R_{e} / p_{j}\right)^{2} n_{j} \cos \left(i_{j}\right) \\
& \omega_{j}=\omega_{j}(0)+\dot{\omega}_{j} t \quad \dot{\omega}_{j}=0.75 J_{2}\left(R_{e} / p_{j}\right)^{2} n_{j}\left(5 \cos ^{2} i_{j}-1\right) \\
& M_{j}=M_{j}(0)+\dot{M}_{j} t \\
& \dot{M}_{j}=n_{j}\left[1+0.75 J_{2} \sqrt{1-e_{j}^{2}}\left(R_{e} / p_{j}\right)^{2}\left(3 \cos ^{2} i_{j}-1\right)\right]
\end{aligned}
$$

Analytical Solution using Mean Orbital Elements-2

Actual Relative Motion.

$$
\begin{aligned}
& \delta x=r_{1}(1+\Delta x)-r_{0} \\
& \delta y=\Delta y r_{1} \\
& \delta z=\Delta z r_{1}
\end{aligned}
$$

$$
r_{j}=a_{j}\left[1-e_{j} \cos \left(M_{j}\right)-1 / 2 e_{j}^{2}\left(\cos \left(2 M_{j}\right)-1\right)+\ldots . .\right], j=0,1
$$

High Eccentricity Reference Orbits

Eccentricity expansions do not converge for high e.

- Use true anomaly as the independent variable and not time.
- Need to solve Kepler's equation for the Deputy at each data output point.

Formation Reconfiguration for HighEccentricity Reference Orbits

High Eccentricity Reconfiguration Cost

Impulses are applied close to the apogee. No symmetry is observed with respect to phase angle.

Cost vs. Final Phase Angle

Research in Progress

Higher order nonlinear theory and period matching conditions for large relative orbits.

- Continuous control Reconfiguration (Lyapunov Functions).
-Nonsingular Elements (To handle very small eccentricity)

Earth-moon and sun-Earth Libration point Formation Flying.

Concluding Remarks

- Discussed 1ssues of Near-Earth Formation Flying and methods for formation design and maintenance.
- Spacecraft that have similar Ballistic coefficients will not see differential drag perturbations.
\square Differential drag is important for dissimilar spacecraft (ISS and Inspection Vehicle).
- Design of Near-Earth Formations in higheccentricity orbits pose many analytical challenges.
\square Thanks for the opportunity and hope you enjoyed your lunch!!

References

Vadali, S.R., Vaddi, S.S., and Alfriend, K.T., "An Intelligent Control Concept for Formation Flying Satellite Constellations," International Journal of Nonlinear and Robust Control, dedicated to Formation Flying, 2002, 12:97-115.
S. S. Vaddi and Vadali S. R., "Linear and Nonlinear Control Laws for Formation Flying," AAS/AIAA Space Flight Mechanics Conference, Puerto Rico, Paper AAS 03-109, February 10-13 2003.

- Vadali, S. R., "An Analytical Solution for Relative Motion of Satellites," Proceedings of the 5th Cranfield Conference on Dynamics and Control of Systems and Structures in Space 2002, King's College, Cambridge, UK, July 20002, pp. 309-316.
- Sengupta, P., Vadali, S. R., and Alfriend, K. T., "Modeling and Control of Satellite Formations in High Eccentricity Orbits," Paper AAS 03-277, Paper AAS 03-277, presented at the AAS John L Junkins Astrodynamics Conference, College Station, TX, May 23-24, 2003.
- Schaub, H. and Alfriend K. T., "J2 Invariant Relative Orbits for Spacecraft Formations," Celestial Mechanics and Dynamical Astronomy 79 (2) p.77-95 2001.
- Schaub, H., Vadali, S.R., Junkins, J.L., and Alfriend, K.,T., "Spacecraft Formation Flying Control Using Mean Orbit Elements," Journal of Astronautical Sciences, Vol. 48, No. 1, January-March 2000.
- Vaddi, S.S., Alfriend K. T., and Vadali, S. R., "Suboptimal Formation Establishment and Reconfiguration using Impulsive Control," Paper AAS 03-590, presented at the AAS/AIAA Astrodynamics Conference, Big Sky , Montana, August 4-7, 2003.

