

Why Return to the Moon?

John Cook President, Cook & Chevalier Enterprises, Inc. apollo11@earthlink.net

Why return to the Moon?

- "Now, I understand that some believe that we should attempt a return to the surface of the Moon first, as previously planned. But I just have to say pretty bluntly here: We've been there before."¹
- What if the same comment had been made about the New World when Christopher Columbus returned?
 - How long would our knowledge of the world stagnated (state of the art understanding shown on previous page)?
 - Who would have discovered the New World?
 - How would the world be different if they had?
- The moon has many valuable resources that can enable infrastructure buildup and aid exploration.
 - This can be funded as a partnership between Government and Private Enterprise - commerce can fund or at least supplement funding exploration and science.
 - Pay as you go

Title Page Graphic: 1507 Martin Waldseemuller's Map of the World, Library of Congress

¹ President Obama, 2010 KSC Address

Value Proposition

"The first trillionaire will be a space miner"²

A trillion dollars would fund NASA at current level for ~55 years

It takes Less Delta-V (change in velocity) to get from the Lunar Surface to Low Earth Orbit (LEO) than it takes to get from the Earth's surface to LEO

- Water Ice has been found (approximately 1 Billion tons at each pole³) in the craters of the North and South poles of the Moon
 - Water to drink, Air to Breath, Rocket Fuel, Oxidizer, and radiation shielding
 - Permanently shadowed craters are near areas of near permanent sunlight
 - There are other valuable resources on the Moon; Helium-3, Aluminum, Titanium, Silica

Why not build a Low Lunar Orbit, Lagrange point, or Low Earth Orbit staging depot to supply outbound spacecraft?

Risk takers and Explorers

- Exploration and risk taking are the essence of America
 - Christopher Columbus
 - Lewis & Clark
 - The Gold Rush
 - The Transcontinental Railroad
 - Transatlantic telegraph
 - Hollywood
 - Silicon Valley
- Space is a new frontier, just as the West was.

Risk Takers and Explorers

- Christopher Columbus
 - 25% friends and family funded
 - Tremendous sailor
 - Passion for exploration
 - The fact that his geographic assumption was incorrect is beside the point – it was a "happy accident"
- Lewis & Clark
 - Government funded expedition initiated by Thomas Jefferson
 - Blazed trail
 - Opened gateway to the West
 - Led to Louisiana Purchase expanding US territory

Risk Takers and Explorers

- Gold Rush
 - People became extremely excited about the gold rush and left behind jobs and family to "strike it rich"
 - Just getting to the West was a life or death proposition grave personal risk
 - Financial risk for potential immense wealth- Bust or Boom
 - Vigorous economic activity supporting logistics and provisioning towns sprouted up rapidly to support prospectors and settlers
- Transcontinental Railroad
 - Immense amount of speculation (Risk)
 - If the train went through a town, it was a tremendous economic boost
 - The railroad infrastructure enabled further commerce by moving goods and people
 - Spinoffs surveying the nation

The Moon is the only next town!

MARS is a Stretch Horizon Goal

- Mars = ~35 Million miles, minimum distance in 2035
- Moon ~ 250,000 miles much closer (scale drawing below – planet size emphasized for visibility)

Earth

Mars

Risk Aversion

- There is currently an extreme amount of risk aversion and apathy, as compared to the early days of exploration, aviation or space travel
- This risk aversion has two main components
 - Fear for physical safety
 - Fear for financial safety

Risk Aversion

- NASA has become too safety risk averse⁴
 - How did the Apollo guys handle risk?
 - "the Original Technical Culture (OTC) of NASA: a commitment to research, testing, and verification; to an in-depth, in-house technical capability (the old Army Arsenal concept); to the belief that engineers had to keep their hands dirty, or a hands-on discipline; to the "normalization of risk", the acceptance of failure, and the anticipation of trouble [which] led to an atmosphere in which these things could be discussed openly" (or wide-open communication); "to the belief that NASA recruited exceptional people; and to a "frontier" mentality" ⁵
- Financial Risk Aversion
 - NASA is legislatively prohibited from advertising/commercialization
 - I can't think of a successful business model where advertising is prohibited

⁴ Walt Cunningham, Apollo 7 astronaut, lecture at University of Houston 2016

⁵ Managing Risk and Complexity Through Open Communication and Teamwork, Philip Tompkins

Risk Aversion

- Big Business has become very risk averse. They want the sure deal. They are waiting to be spoon –fed a multi-billion dollar contract from NASA.
- NASA does not or is not allowed to think entrepreneurially (as ESA does – e.g. Omega Skywalker endorsement)
- This situation has stifled creativity and competition and created a log-jam of status quo

Big Business

- Big business should get out in front of NASA
- Show initiative and be proactive
 - A consortium could share risk/rewards and contribute/sponsor their specialized niche product/service
- Hold a carrot out by showing NASA what is possible
- Build the gas stations to enable the highway

Notional Consortium

Caterpillar Wal-Mart Circle K Shell IBM Holiday Inn Airstream Michelin North Face Apple ALCOA Anicott Steel L.L.Bean RFI **Pioneer Brand McDonalds**

General Electric **British Petroleum** Omega John Deere HP Evian Winnebago Pirelli Nike Sony Perrier Kellogg Patagonia **Starbucks** Kraft Pizza Hut

Unfinished Business

- We have unfinished business on the Moon.
 - President Kennedy skipped Wernher von Braun's master plan in favor of "Flags & Footprints" to beat the Russians
 - The Apollo program was prematurely cancelled.
 - Apollo just scratched the surface.
 - We should endeavor to create a Moon/Mars exploration architecture that builds on lessons learned from Apollo and the International Space Station and should include as much commonality of hardware as possible.
 - As much as possible, we should strive for simplicity and adaptation/evolution of proven hardware and operational concepts wherever possible and avoid the "Clean Sheet" tendency of reinventing the wheel.
 - Have a Master Plan of the evolution of hardware, instead of a series of disjointed starts and stops of programs.

Lessons Learned/Opportunities

- Key Technical Lessons Learned from Apollo and ISS
 - Apollo style technical excellence, leadership and communication down and up to rapidly identify and solve problems
 - Standardization of interfaces
 - Standardization of software, especially CAD software (there were multiple CAD formats used on ISS)
 - Standardization of coordinate systems and units (on ISS there was/is a U.S. analytical CSYS and a Russian CSYS – NASA contractors deliver models in arbitrary coordinate systems)
 - Program Architect/Large Scale System Integrator someone needs to have the "Big Picture" as well as familiarity with the details
 - Apollo relied on 1:1 fit checks but ISS assembly verification was largely done by CAD analysis (the author participated in that) or master tooling
 - Warts and All, ISS is the best model we have for International program integration – but it could be better (fewer warts)

Summary

- A lunar outpost can and should serve as a "dress rehearsal" for Mars (practice makes perfect).
- Hardware design, surface operational concepts and logistics can and should have commonality for the Moon and Mars, resulting in cost savings and system robustness.
- Minimize "Dead End" Technology development.

Forward Work

- NASA/Industry
 - Legislation to allow public/private partnership
 - Without being socialistic or dependent on lobbyists and corporate welfare
- Build the infrastructure
 - Models/lessons learned
 - Transcontinental railroad
 - Telegraph/Telephone
 - National Highway System
 - Internet
 - GPS