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Consider a circular selenocentric equatorial orbit (SEO) of radius r1.  An idealized direct lunar 
landing strategy is to be assessed by this paper as r1 is systematically varied.  This strategy uses 
two impulses as follows. 
 
1) The first "deorbit" impulse Δv1 rotates the SEO plane through the angle Δi and lowers 

pericynthion such that the desired landing site is intercepted after coasting through a 
selenocentric transfer angle of 90°.  Assuming the landing site is at selenocentric latitude φ, 
Δi = | φ |. 

 
2) The second "landing" impulse Δv2 stops inertial selenocentric motion at landing site 

intercept.  Note maximum inertial motion of the Moon's surface at its equator is 4.6 m/s.  
Such motion is assumed insignificant at the level of this assessment's fidelity. 

 
The selenocentric post-deorbit coasted trajectory to landing site intercept is assumed to describe 
an unperturbed ellipse segment starting from apocynthion at r1.  In this assessment, the SEO may 
be prograde or retrograde without affecting results.  Furthermore, the landing strategy's two 
impulses may be reversed to create an equivalent launch strategy without affecting assessment 
results.  A roundtrip from SEO at a particular r1 to the specified landing site at φ is therefore just 
twice the assessed ΔvTOT = Δv1 + Δv2.  Physical constants of relevance to this assessment are the 
Moon's reduced mass µ = 4902.80007 km3/s2 and the Moon's surface radius R = 1737.4 km.1 
 
Assessment computations fundamentally depend on the polar expression for conic trajectories in 
Equation 1.  This relation determines selenocentric distance r as a function of true anomaly ν in 
the post-deorbit ellipse specified by its fixed eccentricity e and its semi-latus rectum p. 
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r =  
p

1 +  e cos  ν
 (1) 

 
As the coast from deorbit to landing proceeds, ν increases from 180° to 270°.  Consequently, the 
landing case for Equation 1 produces r = p = R.  The deorbit case for Equation 1, when solved 
for e, leads to Equation 2. 
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 (2) 

 
Since r1 is at apocynthion, the coast trajectory's semi-major axis a is determined by Equation 3 in 
accord with Kepler's first law and ellipse geometry. 
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1 Values for these constants are obtained from the Horizons ephemeris server at https://ssd.jpl.nasa.gov/?horizons 
(accessed on 23 March 2017). 
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The energy integral for conic motion leads to expressions for selenocentric speed immediately 
before and after the deorbit impulse. 
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Now consider a velocity vector triangle with Δv1 as its unknown side.  Known sides v1- and v1+ 
for this triangle are legs of the specified deorbit turning angle Δi.  When the law of cosines is 
applied to the triangle, Equation 6 results. 
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The conic motion energy integral also determines the landing impulse. 
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Results from numerically evaluated landing strategy assessments with Δi = 90° appear in Table 
1.  Simulations of the post-deorbit coast for each assessment contribute Table 1 data for the coast 
time from deorbit to landing Δt, together with the inertial flight path angle at landing γ2.  Both 
ΔvTOT and Δt values from Table 1 are plotted as functions of r1 in Figure 1.  Coasted inertial 
selenocentric motion arising from the r1 = 10,000 km simulation is plotted in Figure 2. 
 
Table 1.  One way direct transfers from SEOs of increasing radii are assessed with 
Equations 2-7 for polar lunar landings (Δi = 90°).  The second r1 = 70,000 km assessment 
(in italics) has a Δv1 whose Equation 4 v1- contribution is overridden with zero to 
approximate best-case deorbit initial conditions from a periodic orbit about the Earth-
Moon cislunar (EML1) or trans-lunar (EML2) colinear libration points. 

r1 (km) Δv1 (km/s) Δv2 (km/s) ΔvTOT (km/s) Δt (hours) γ2 (deg) 
10,000 0.758592 2.179095 2.937687 4.836 -39.566 
20,000 0.516174 2.274830 2.791004 13.119 -42.400 
30,000 0.415802 2.307910 2.723712 23.729 -43.292 
40,000 0.357622 2.324655 2.682277 36.235 -43.728 
50,000 0.318533 2.334766 2.653299 50.381 -43.987 
60,000 0.289965 2.341533 2.631497 65.997 -44.158 
70,000 0.267915 2.346379 2.614294 82.956 -44.280 
70,000 0.041694 2.346379 2.388073 82.956 -44.280 
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Figure 1.  Table 1 data for ΔvTOT (orange) and Δt (blue) are plotted as functions of r1. 
 

 
Figure 2.  Coasted post-deorbit inertial selenocentric motion from r1 = 10,000 km to a polar 
landing is plotted for a lunar equatorial perspective.  With Δi = 90°, pre-deorbit SEO 
motion is perpendicular to the plot plane.  Time ticks along the coasted trajectory are at 
30-minute intervals and are annotated on the even hour in day-of-year/hh:mm format. 
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The foregoing assessments are conducted at Δi = 90° because the Moon's polar regions are 
widely considered to be prime locations for lunar in-situ resource utilization (ISRU).  Many 
cislunar architecture proposals advocating lunar ISRU logistics nodes and gateways are orbit-
agnostic.  Still other proposals limit SEO considerations to radii near 70,000 km in the Moon's 
weak stability boundary, likely because NASA has targeted such an orbit as the destination for 
its Asteroid Retrieval Robotic Mission. 
 
Under simplifying assumptions of this paper, polar landing is certainly a maximum ΔvTOT case 
for any SEO, regardless of r1.  Many periodic orbits associated with EML1/L2 are similarly 
challenged when a landing at φ = ±90° is contemplated.  Table 1 data quantify, at least to first 
order, trends in propulsive requirements and transit times associated with polar lunar surface 
logistics to and from SEOs.  Because EML1/L2 are near a selenocentric distance of 70,000 km, 
the two Table 1 assessments at r1 = 70,000 km serve to place at least some polar landing cases 
from EML1/L2 periodic orbits in the interval 2.38 km/s < ΔvTOT < 2.62 km/s.  Polar landing from 
an r1 = 10,000 km SEO therefore requires 12% to 23% more ΔvTOT than does a representative 
case from EML1/L2 periodic orbits.  In contrast, landing from an r1 = 10,000 km SEO requires 
only 6% of the time required to land from periodic orbits near EML1/L2.  Considerations, such 
as whether or not humans are landed on the Moon, will heavily influence the premiums placed 
on propulsive requirements and transit times associated with candidate cislunar logistics node 
orbits. 


