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Why Estimate?

• We estimate without even being conscious of it

• Anytime you walk down the hallway, you are estimating, your
eyes and ears are the sensors and your brain is the computer

• In its essence, estimation is nothing more than taking noisy
sensor data, filtering the noise, and producing the ‘best’ state
of the vehicle
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What Do We Estimate?

• As NASA engineers, we estimate a variety of things
• Position, Velocity, Attitude
• Mass
• Temperature
• Sensor parameters (biases)

• These quantities are usually referred to as the ‘states’ of the
system

• We use a variety of sensors to accomplish this task
• Inertial Measurement Units (IMUs)
• GPS Receivers (GPSRs)
• LIDARs
• Cameras

• These sensors are used to determine the states of the system
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A Brief History of Estimation

• Estimation has its origins in the work of Gauss and his
innovation called ‘Least Squares’ Estimation
• He was interested in computing the orbits of asteroids and

comets given a set of observations

• Much of the work through WWI centered around extensions to
Least Squares Estimation

• In the interval between WWI and WWII, a number of
revolutionary contributions were made to sampling and
estimation theory
• Norbert Weiner and the Weiner Filter
• Claude Shannon and Sampling Theory

• Much of the work in the first half of the Twentieth Century
focused on analog circuitry and the frequency domain
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Modern Estimation and Rudolf Kalman

• Everything changed with the confluence of two events:
• The Cold War and the Space Race
• The Advent of the Digital Computer and Semiconductors

• A new paradigm was introduced: State Space Analysis
• Linear Systems and Modern Control Theory

• Estimation Theory
• Optimization Theory

• Rudolf Kalman proposes a new approach to linear systems
• Controllability and Observability
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Rudolf Kalman and His Filter

• In 1960 Kalman wrote a paper in an obscure ASME journal
entitled “A New Approach to Linear Filtering and Prediction
Problems” which might have died on the vine, except:
• In 1961, Stanley Schmidt of NASA Ames read the paper and

invited Kalman to give a seminar at Ames
• Schmidt recognized the importance of this new theory and

applied it to the problem of on-board navigation of a lunar
vehicle – after all this was the beginning of Apollo

• This became known as the ‘Kalman Filter’
• Kalman’s paper was rather obtuse in its nomenclature and

mathematics
• It took Schmidt’s exposition to show that this filter could be

easily mechanized and applied to a ’real’ problem

• The Kalman Filter became the basis for the on-board
navigation filter on the Apollo CSM and LM
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Types of Estimation

• There are basically two types of estimation: batch and
sequential

• Batch Estimation
• When sets of measurements taken over a period of time are

‘batched’ and processed together to estimate the state of a
vehicle at a given epoch

• This is usually the case in a ground navigation processor
• Sequential Estimation

• When measurements are processed as they are taken and the
state of the vehicle is updated as the measurements are
processed

• This is done in an on-board navigation system
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Types of Sensors

• Inertial Measurement Units (IMUs)

• GPS Recievers

• Magnetometers
• Optical Sensors

• Visible Cameras
• IR Cameras
• LIDARs (Scanning and Flash)

• RF sensors
• Radars (S-band and C-band)
• Range and Range-rate from Comm

• Altimeters

• Doppler Velocimeters
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Why do we care about this probability stuff?

“Information: the negative reciprocal value of probability .”

Claude Shannon
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Concepts from Probability Theory

• A random variable is one whose ‘value’ is subject to
variations due to chance (randomness) – it does not have a
fixed ‘value’; it can be discrete or continuous
• A coin toss: can be ‘heads’ or ‘tails’ – discrete
• The lifetime of a light bulb – continuous

• A probability density function (pdf), p(x), represents the
likelihood that x occurs
• Always non-negative
• Satisfies ∫ ∞

−∞

p(ξ) dξ = 1

• The expectation operator, E[f(x)], is defined as

E [f(x)] =

∫ ∞

−∞

f(ξ) p(ξ) dξ
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Concepts from Probability Theory – Mean and Variance

• The mean (or first moment) of a random variable x, denoted
by x̄, is defined as

x̄ ∆
= E [x] =

∫ ∞

−∞

ξ p(ξ) dξ

• The mean-square of a random variable x, E
[
x2

]
, is defined

as

E
[
x2

] ∆
=

∫ ∞

−∞

ξ2 p(ξ) dξ

• The variance (or second moment) of a random variable x,
denoted by σ2

x , is

σ2
x

∆
= E

[
[x − E(x)]2

]
=

∫ ∞

−∞

(ξ − E(ξ))2 p(ξ) dξ

= E
[
x2

]
− x̄2
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Concepts from Probability Theory – Mean and Variance
of a Vector

• The mean of a random n−vector x, x̄, is defined as

x̄ ∆
= E [x] =

∫ ∞

−∞

· · ·

∫ ∞

−∞

∫ ∞

−∞

ξ p(ξ) dξ

• The (co-)variance of random n−vector x, Px, is defined as

Px
∆
= E

[
[x − x̄] [x − x̄]T

]
=

∫ ∞

−∞

[
ξ − ξ̄

] [
ξ − ξ̄

]T
p(ξ) dξ

=


σ2

x1
σx1x2 · · · σx1xn

σx1x2 σ2
x2

· · · σx2xn
...

...
. . .

...

σx1xn σx2xn · · · σ2
xn


The covariance is geometrically represented by an error
ellipsoid.
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Concepts from Probability Theory –The Gaussian
Distribution

• The Gaussian probability distribution function, also called
the ‘Normal distribution’1 or a ‘bell curve’, is at the heart of
Kalman filtering

• We assume that ‘our’ random variables have Gaussian pdfs
• We like to work with Gaussians because they are completely

characterized by their mean and covariance
• Linear combinations of Gaussians are Gaussian

• The Gaussian distribution of random n−vector x, with a mean
of x̄ and covariance Px, is defined as

pg(x) =
1

(2π)n/2 |Px|
e−

(x−x̄)T P−1
x (x−x̄)

2

1Physicist G. Lippman is reported to have said, ‘Everyone believes in the
normal approximation, the experimenters because they think it is a mathematical
theorem, the mathematicians because they think it is an experimental fact.’
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Concepts from Probability Theory –The Gaussian
Distribution

• We can show that∫
Rn

1
(2π)n/2 |Px|

e−
(x−x̄)T P−1

x (x−x̄)

2 dx = 1

• If a random process is generated
by a sum of other (non-Gaussian)
random processes, then, in the
limit, the combined distribution
approaches a Gaussian distribution
(The Central Limit Theorem)
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Linear Systems

• A system is a mapping from input signals to output signals,
written as: w(t) = L(v(t))

• A system is linear if for all input signals v(t), v1(t), and v2(t)
and for all scalars α,
• L is additive: L(v1(t) + v2(t)) = L(v1(t)) + L(v2(t))
• L is homogeneous: L(αv(t)) = αL(v(t))

• For a system to be linear, if 0 is an input, then 0 is an output:
L(0) = L(0 · v(t)) = 0 · L(v(t)) = 0

• If the system does not satisfy the above two properties, it is
said to be nonlinear

• If L(v(t)) = v(t) + 1, is this linear?
• It is not because for v(t) = 0, L(0) = 1 , 0

• Lesson: Some systems may look linear but they are not!
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Nonlinear Systems and the Linearization Process

• Despite the beauty associated with linear systems, the fact of
the matter is that we live in a nonlinear world.

• So, what do we do? We make these nonlinear systems into
linear systems by linearizing

• This is predicated on a Taylor series approximation which we
deploy as follows: Given a nonlinear system of the form:
Ẋ = f(X, t), we linearize about (or expand about) a nominal
trajectory, X? (with Ẋ? = f(X?, t)), as

Ẋ(t) = f(X?, t) +

(
∂f
∂X

)
X=X?

(X − X?) + · · ·
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Nonlinear Systems and the State Transition Matrix

• If we let x(t) = X − X? and let F(t) =
(
∂f
∂X

)
X=X?

, then we get

ẋ = F(t)x with x(t0) = x0

• The solution of this equation is

x(t) = e
∫ t
t0

F(τ) dτx0 = Φ(t , t0)x0

where Φ(t , t0) is the State Transition Matrix (STM) which
satisfies

Φ̇(t , t0) = F(t)Φ(t , t0) with Φ(t0, t0) = I

• The STM can be approximated (for F(t) = F = a constant) as

Φ(t , t0) = e
∫ t
t0

F(τ) dτ
= eF(t−t0) = I + F(t − t0) +

1
2

F2(t − t0)2 + · · ·
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A Bit More About the State Transition Matrix

The State Transition Matrix (STM) is at the heart of practical
Kalman filtering. In its essence it is defined as

Φ(t , t0)
∆
=

∂X(t)
∂X(t0)

As the name implies, it is used to ‘transition’ or move perturbations
of the state of a nonlinear system from one epoch to another, i.e.

x(t) = Φ(t , t0)x(t0) ⇐⇒
(
X(t) − X?(t)

)
=

∂X(t)
∂X(t0)

(
X(t0) − X?(t0)

)
In practical Kalman filtering, we use a first-order approximation2

Φ(t , t0) ≈ I + F(t0) (t − t0) = I +
∂f(X, t)
∂X

∣∣∣∣∣∣
X=X0

(t − t0)

2In cases of fast dynamics, we can approximate the STM to second-order as:
Φ(t , t0) ≈ I + F(t0) (t − t0) + 1

2 F2(t0) (t − t0)2
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How do we Implement This?

“Never do a calculation unless you already know the answer.”

John Archibald Wheeler’s First Moral Principle
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The Context of Least Squares Estimation

• Least Squares estimation has been a mainstay of engineering
and science since Gauss invented it to track Ceres circa 1794

• It has been used extensively for spacecraft state estimation,
particularly in ground-based navigation systems

• The Apollo program had an extensive ground station network
(MSFN/STDN) coupled with sophisticated ground-based
batch processors for tracking the CSM and LM
• A set of measurements (or several sets of measurements)

taken over many minutes and over several passes from
different ground stations would be ‘batched’ together to get a
spacecraft state at a particular epoch

• Least Squares estimation is predicated on finding a solution
which minimizes the square of the errors of the model

y = Hx + ε
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The Least Squares Problem

The problem is as follows: given a set of observations, y, subject to
measurement errors (ε), find the best solution, x̂, which minimizes
the errors, i.e.

min J =
1
2
εTε =

1
2

(y − Hx)T (y − Hx)

To do this we take the first derivative of J with respect to x and set
it equal to zero as

∂J
∂x

=
∂

∂x

[
1
2

(y − Hx)T (y − Hx)

]
x=x̂

= − (y − Hx̂)T H = 0

Therefore, the optimal solution, x̂, is

x̂ =
(
HT H

)−1
HT y
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The Weighted Least Squares (WLS) Problem

Suppose now we are given measurements y, whose error has a
measurement covariance of R. How can we get the best estimate,
x̂ which minmizes the errors weighted by the accuracy of the
measurement error (R−1)? The problem can be posed as

min J =
1
2
εT R−1ε =

1
2

(y − Hx)T R−1 (y − Hx)

Once again, we take the first derivative of J with respect to x and
set it equal to zero as

∂J
∂x

=
∂

∂x

[
1
2

(y − Hx)T R−1 (y − Hx)

]
x=x̂

= − (y − Hx̂)T R−1H = 0

Therefore, the optimal solution, x̂, is

x̂ =
(
HT R−1H

)−1
HT R−1y
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The WLS Problem with A Priori Information

Suppose we need to find the best estimate of the state, given
measurements y, with measurement error covariance R, but we
are also given an a priori estimate of the state, x̄ with covariance
P̄. This problem can be posed as

min J =
1
2

(y − Hx)T R−1 (y − Hx) +
1
2

(x̄ − x)T P̄−1 (x̄ − x)

As before, we take the first derivative of J with respect to x and set
it equal to zero as

∂J
∂x

∣∣∣∣∣
x=x̂

= − (y − Hx̂)T R−1H − (x̄ − x̂)T P̄−1 = 0

Therefore, the optimal solution, x̂, is

x̂ =
(
HT R−1H + P̄−1

)−1 [
HT R−1y + P̄−1x̄

]
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Nonlinear Batch Estimation

In general, the system of interest will be nonlinear of the form

Yk = h(Xk , tk ) + εk

How do we get the best estimate of the state X? Well, first we

linearize about a nominal state X?
k (with xk

∆
= Xk − X?

k ) as

Yk = h(X?
k + xk , tk ) + εk = h(X?

k ) +
∂h
∂X

∣∣∣∣∣
Xk =X?k

(
Xk − X?

k

)
+ · · ·+ εk

Defining H̃k
∆
= ∂h

∂X

∣∣∣
Xk =X?k

we get the following equation

yk = H̃k xk + εk
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Nonlinear Batch Estimation at an Epoch

In batch estimation, we are interested in estimating a state at an
epoch, say X0, with measurements taken after that epoch – say, at
tk . How can we obtain this? Well, we use the state transition matrix
as follows

Xk − X?
k = Φ(tk , t0)

(
Xk − X?

k

)
⇐⇒ xk = Φ(tk , t0)x0

so that we can map the measurements back to the epoch of
interest as

yk = H̃kΦ(tk , t0)x0 + εk = Hk x0 + εk

The least squares solution (over all the p measurements) is

x̂0 =

 p∑
i=1

HT
i R−1

i Hi + P̄−1
0

−1  p∑
i=1

HT
i R−1

i yi + P̄−1
0 x̄0

 = X̂0 − X?
0

This is called the normal equation.
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The Nonlinear Batch Estimation Algorithm
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Batch Filter Example – Aircraft Tracking

Given a ground station tracking an
airplane, moving in a straight line at
a constant speed, with only bearing
measurements, we are interested in
knowing the speed of the airplane
and its position at the beginning of
the tracking pass (x0, y0, u0, v0). The
equations are

x(t) = u0(t − t0) + x0

y(t) = v0(t − t0) + y0

θ(t) = tan−1
[
y(t)
x(t)

]
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Batch Filter Example – Aircraft Tracking (II)

The measurements are:
The initial guess is

X∗0 =


985
105
−1.5
10


with initial covariance

P0 =


100 0 0 0
0 100 0 0
0 0 1 0
0 0 0 1
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Batch Filter Example – Aircraft Tracking (III)

After 7 iterations the following results are obtained:

Parameter Truth Initial Guess Converged State
x0 1000 985 983.5336
y0 100 105 99.3470
u0 -3 -1.5 -2.9564
v0 12 10 11.7763

Lesson: The x−component is not readily observable. But that is
not surprising since angles do not provide information along the
line-of-sight.
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Something to remember

One must watch the convergence of a numerical code as carefully
as a father watching his four year old play near a busy road.

J. P. Boyd
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The Need for Careful Preparation

“Six months in the lab can save you a day in the library”

Albert Migliori, quoted by J. Maynard
in Physics Today 49, 27 (1996)
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Stochastic Processes – The Linear First-Order
Differential Equation

• Let us look at a first-order differential equation for x(t), given
f(t), g(t), w(t) and x0 as

ẋ(t) = f(t)x(t) + g(t)w(t) with x(t0) = x0

• The solution of this equation is

x(t) = e
∫ t
t0

f(τ)dτ
x0 +

∫ t

t0
e

∫ t
ξ

f(τ)dτg(ξ)w(ξ)dξ

• Suppose now we define φ(t , t0)
∆
= e

∫ t
t0

f(τ)dτ
, we can write the

above solution as

x(t) = φ(t , t0)x0 +

∫ t

t0
φ(t , ξ)g(ξ)w(ξ)dξ
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The Mean of a Linear First-Order Stochastic Process

• Given a first-order stochastic process, χ(t), with constant f
and g and white noise, w(t), which is represented as

χ̇(t) = f χ(t) + g w(t) with χ(t0) = χ0

and the mean and covariance of w(t) expressed as

E[w(t)] = 0 and E[w(t)w(τ)] = q δ(t − τ)

• The mean of the process, χ̄(t) is

χ̄(t) = E[χ(t)] = e
∫ t
t0

f dτ
χ̄0 +

∫ t

t0
e

∫ t
ξ

f dτg(ξ)E[w(ξ)]dξ

= e
∫ t
t0

f dτ
χ̄0

= ef(t−t0)χ̄0
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Stochastic Processes – The Mean-Square and
Covariance of a Linear First-Order Stochastic Process

• The mean-square of the linear first-order stochastic process,
χ(t) is

E[χ2(t)] = e2f(t−t0)E [χ(t0)χ(t0)] +
q
2f

[
1 − e2f(t−t0)

]
= φ2(t , t0)E [χ(t0)χ(t0)] +

q
2f

[
1 − φ2(t , t0)

]
• The covariance of χ(t), Pχχ(t), is expressed as

Pχχ(t) = E
[
(χ(t) − χ̄(t))2

]
= E[χ2(t)] − χ̄2(t)

= φ2(t , t0)Pχχ(t0) +
q
2f

[
1 − φ2(t , t0)

]
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Stochastic Processes – The Vector First-Order
Differential Equation

A first-order vector differential equation for x(t), given x(t0) and
white noise with E(w(t)) = 0, and E(w(t)w(τT )) = Q δ(t − τ), is

ẋ(t) = F(t)x(t) + G(t)w(t)

The solution of this equation is

x(t) = Φ(t , t0)x(t0) +

∫ t

t0
Φ(t , ξ)G(ξ)w(ξ)dξ

where Φ(t , t0) satisfies the following equation

Φ̇(t , t0) = F(t)Φ(t , t0), with Φ(t0, t0) = I
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The Mean and Mean-Square of a Linear, Vector Process

The mean of the stochastic process ẋ(t) = F(t)x(t) + G(t)w(t) is

x̄(t) = E[x(t)] = Φ(t , t0)E[x(t0)] +

∫ t

t0
Φ(t , ξ)G(ξ)E[w(ξ)]dξ

= Φ(t , t0)x̄(t0)

The mean-square of the process (with E[x(t0)wT (t)] = 0) is

E[x(t)xT (t)] = E
{[
Φ(t , t0)x(t0) +

∫ t

t0
Φ(t , ξ)G(ξ)w(ξ)dξ

]
×

[
Φ(t , t0)x(t0) +

∫ t

t0
Φ(t , χ)G(ξ)w(χ)dχ

]}
= Φ(t , t0)E[x(t0)xT (t0)]ΦT (t , t0)

+

∫ t

t0
Φ(t , ξ)G(ξ) Q GT (ξ)ΦT (t , ξ) dξ
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The Covariance of a Linear, Vector Process

The covariance of x(t), Pxx(t), given Pxx(t0), is expressed as

Pxx(t) = E
[
(x(t) − x̄(t)) (x(t) − x̄(t))T

]
= E[x(t)xT (t)] − x̄(t)x̄T (t)

= Φ(t , t0)Pxx(t0)ΦT (t , t0)

+

∫ t

t0
Φ(t , ξ)G(ξ) Q GT (ξ)ΦT (t , ξ) dξ

The differential equation for Pxx(t) can be found to be

Ṗxx(t) = F(t)Pxx(t) + Pxx(t)FT (t) + G(t) Q GT (t)

In the above development we have made use of the Sifting
Property of the Dirac Delta, δ(t − τ), expressed as∫ ∞

−∞

f(ξ)δ(t − ξ)dξ = f(t)
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A Discrete Linear, Vector Process

Given the continuous process (ẋ(t) = F(t)x(t) + G(t)w(t)), whose
solution is

x(tk ) = Φ(tk , tk−1)x(tk−1) +

∫ tk

tk−1

Φ(t , ξ)G(ξ)w(ξ)dξ

the discrete stochastic analog process is

xk = Φ(tk , tk−1)xk−1 + wk , with wk
∆
=

∫ tk

tk−1

Φ(t , ξ)G(ξ)w(ξ)dξ

whose mean is

x̄k = Φ(tk , tk−1)x̄k−1
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The Covariance of a Discrete Linear, Vector Process

Likewise, the continuous-time solution for the covariance was

Pxx(tk ) = Φ(tk , t0)Pxx(t0)ΦT (tk , t0)

+

∫ t

t0
Φ(tk , ξ)G(ξ) Q GT (ξ)ΦT (tk , ξ) dξ

whose discrete analog is

Pxxk = Φ(tk , tk−1)Pxxk−1Φ
T (tk , tk−1) + Qk

where

Qk
∆
=

∫ t

t0
Φ(tk , ξ)G(ξ) Q GT (ξ)ΦT (tk , ξ) dξ
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Practical Considerations

“There is nothing more practical than a good theory”

Albert Einstein
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The Context of the Kalman Filter

• With the advent of the digital computer and modern control,
the following question arose: Can we recursively estimate the
state of a vehicle as measurements become available?

• In 1961 Rudolf Kalman came up with just such a methodology
to compute an optimal state given linear measurements and a
linear system

• The resulting Kalman filter is an globally optimal linear,
model-based estimator driven by Gaussian, white noise which
has two steps
• Propagation: the state and covariance are propagated from

one epoch to the next by integrating model-based dynamics
• Update: the state and covariance are optimally updated with

measurements
• We begin with the same equation as before

yk = Hk xk + εk with E(εk ) = 0, E(εk ε
T
k ) = Rk
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What does a Kalman Filter do?

• Fundamentally, a Kalman filter is nothing more than a
predictor (which we call the ‘propagation’ phase) followed by a
corrector (which we call the ‘update’ phase)

• We use the dynamics (i.e. Newton’s Laws) to predict the state
at the time of a measurement

• The measurements are then used to correct or update the
predicted state.

• It does this in an “optimal” fashion
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Prediction
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Measurement
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Compute Residual
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Correction
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The Derivation of the Kalman Filter (I)

Let x̂−k be an unbiased a priori estimate (the prediction) of xk with
covariance P−k so that the a priori estimate error, e−k is

e−k = xk − x̂−k with E(e−k ) = 0, E(e−k e−
T

k ) = P−k

We hypothesize an unbiased linear update (the correction) to xk ,
called x̂+

k , as follows (with Kk as yet unknown)

x̂+
k = x̂−k + Kk

(
yk − Hk x̂−k

)
whose a posteriori error, e+

k , is

e+
k = xk − x̂+

k = e−k − Kk (Hk e−k + εk ) = (Ik − Kk Hk )e−k − Kk ε

If e−k and εk are uncorrelated, then the a posteriori covariance is

P+
k = E(e+

k e+T

k ) = (I − Kk Hk )P−k (I − Kk Hk )T + Kk Rk KT
k
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The Derivation of the Kalman Filter (II)

So far we haven’t said anything about Kk . We now choose Kk to
minimize the a posteriori error as1

min J =
1
2

E
[
e+T

k e+
k

]
=

1
2

tr
{
E

[
e+T

k e+
k

]}
=

1
2

E
{
tr

[
e+T

k e+
k

]}
=

1
2

E
{
tr

[
e+

k e+T

k

]}
=

1
2

tr
{
E

[
e+

k e+T

k

]}
=

1
2

tr
(
P+

k

)
so we obtain K by2

∂

∂Kk
tr

(
P+

k

)
=

∂

∂Kk
tr

[
(I − Kk Hk )P−k (I − Kk Hk )T + Kk Rk KT

k

]
= 0

1The cyclic invariance property of the trace is: tr(ABC) = tr(BCA) = tr(CAB)
2Recalling that
∂

∂X
tr(AXBXT ) = AT XBT + AXB;

∂

∂X
tr(AXB) = AT BT ;

∂

∂X
tr(AXT B) = BA
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The Derivation of the Kalman Filter (III)

This results in the following condition

−P−k HT
k − P−k HT

k + Kkopt

(
Hk P−k HT

k + Rk

)T
+ Kkopt

(
Hk Pk HT

k + Rk

)
= 0

which gives

Kkopt = P−k HT
k

(
Hk P−k HT

k + Rk

)−1

and substituting into the equation2 for P+we get

P+
k = P−k − P−k HT

k

(
Hk P−k HT

k + Rk

)−1
Hk P−k =

(
I − Kkopt Hk

)
P−k

so the state update is

x̂+
k = x̂−k + Kkopt

(
yk − Hk x̂−k

)
2Recall that P+ = (I − KH)P−(I − KH)T + KRKT
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The Kalman Filter Revealed

Given the dynamics and the measurements

xk = Φ(tk , tk−1)xk−1 + Γk wk , with E(wk ) = 0, E(wk wT
j ) = Qkδkj

yk = Hk xk + εk , with E(εk ) = 0, E(εk ε
T
j ) = Rkδkj

The Kalman Filter contains the following phases:
Propagation – the Covariance Increases

x̂−k = Φ(tk , tk−1)x̂+
k−1

P−k = Φ(tk , tk−1)P+
k−1Φ

T (tk , tk−1) + Γk QkΓ
T
k

Update – the Covariance Decreases

Kkopt = P−k HT
k

(
Hk P−k HT

k + Rk

)−1

x̂+
k = x̂−k + Kkopt

(
yk − Hk x̂−k

)
P+

k =
(
I − Kkopt Hk

)
P−k =

(
I − Kkopt Hk

)
P−k

(
I − Kkopt Hk

)T
+ Kkopt Rk KT

kopt
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A Kalman Filter Example

Given a spring-mass-damper system governed by the following
equation

r̈(t) = −0.001r(t) − 0.005ṙ(t) + w(t)

the system can be written (in first-order discrete form,
xk = Φ(tk , tk−1)xk−1 + Γk wk ) as[

r(tk )
ṙ(tk )

]
= exp

{[
0 1

−0.001 −0.005

]
∆t

} [
r(tk−1)
ṙ(tk−1)

]
+

[
0
1

]
wk

with measurements

yk = r(tk ) + εk with E[εk ] = 0, E[εjεk ] = 0.0012δjk

and

P0 =

[
1 0
0 0.12

]
and Q = 0.0052
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A Kalman Filter Example (II)
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A Kalman Filter Example (III)
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Practical Considerations

“A computation is a temptation that should be resisted a long as
possible ”

John Boyd (paraphrasing T.S. Eliot) , 2000
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The Extended Kalman Filter

Since we live in a nonlinear and non-Gaussian world, can we fit the
Kalman filter paradigm into the ‘real’ world? Being engineers,
when all else fails, we linearize.

X̂k = X?
k + x̂k

This process results in an algorithm called the Extended Kalman
filter (EKF). However all guarantees of stability and optimality are
lost. The EKF is a conditional mean estimator with dynamics
truncated after first-order by deterministically linearizing about the
conditional mean.
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The Development of the Extended Kalman Filter (I)

Begin with the nonlinear state equation

Ẋ(t) = f(X, t) + w(t) with E[w(t)] = 0, E[w(t)w(τ)] = Q δ(t − τ)

whose solution, given X(tk−1) is

X(t) = X(tk−1) +

∫ t

tk−1

f(X, ξ)dξ +

∫ t

tk−1

w(ξ)dξ

We expand f(X, t) in a Taylor series about X̂ = E(X) as

Ẋ(t) = f(X̂, t) +
∂f
∂X

∣∣∣∣∣
X=X̂

(
X − X̂

)
+ · · ·+ w(t)

so that ˙̂X(t), neglecting higher than first-order terms,

˙̂X(t) = f(X̂, t)
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The Development of the Extended Kalman Filter (II)

Recalling the definition of P
(

∆
= E

[
(X − X̂)(X − X̂)T

] )
, we find that

Ṗ(t) = F(t)P(t) + P(t)FT (t) + Q where F ∆
=

∂f
∂X

∣∣∣∣∣
X=X̂

which can be integrated as

P(tk ) = Φ(tk , tk−1)P(tk−1)ΦT (tk , tk−1) + Qk

with Φ(tk−1, tk−1) = I and

Φ̇(t , tk−1) = F(t)Φ(t , tk−1), and Qk =

∫ tk

tk−1

Φ(tk , ξ) QΦT (tk , ξ)dξ
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The Development of the Extended Kalman Filter (III)

Likewise, the measurement equation can be expanded in a Taylor
series about X̂−k , the a priori state, as

Yk = h(Xk ) + εk = h(X̂−k ) +
∂h
∂Xk

∣∣∣∣∣
Xk =X̂−k

(
Xk − X̂−k

)
+ · · ·+ εk

In the EKF development, we truncate the Taylor series after
first-order. As in the Kalman filter development, we minimize the
trace of the a posteriori covariance and this results in

Kk (X̂−k ) = P−k HT
k (X̂−k )

[
Hk (X̂−k ) P−k HT

k (X̂−k ) + Rk

]−1

P+
k =

[
I − Kk (X̂−k )HT

k (X̂−k )
]
P−k

X̂+
k = X̂−k + Kk (X̂−k )

[
Yk − hk (X̂−k )

]
Hk (X̂−k ) =

∂h
∂Xk

∣∣∣∣∣
Xk =X̂−k
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The Extended Kalman Filter (EKF) Algorithm
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Practical Considerations

“In theory, there is no difference between theory and practice, but
in practice there is”

John Junkins, 2012
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Practical Matters – Processing Multiple Measurements

• In general, more than one measurement will arrive at the
same time

• Usually the measurements are uncorrelated and hence they
can be processed one-at-a-time
• However, even if they are correlated, they can usually be

treated as if they were uncorrelated – by increasing the
measurement noise variance

• If the measurements are processed one-at-a-time, then

Kk = P−k HT
k

(
Hk P−k HT

k + Rk

)−1
=

P−k HT
k

Hk P−k HT
k + Rk

• Thus there is no need for a matrix inverse – we can use scalar
division

• This greatly reduces the computational throughput, not to
mention software complexity
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Practical Matters – Processing Non-Gaussian
Measurements

• The Kalman Filter is predicated on measurements whose
errors are Gaussian

• However, real-world sensors seldom have error
characteristics that are Gaussian
• Real sensors have (significant) biases
• Real sensors have significant skewness (third moment) and

kurtosis (fourth moment)
• A great deal of information is contained in the tails of the

distribution
• Significant sensor testing needs to be performed to fully

characterize a sensor and determine its error characteristics
• Measurement editing is performed on the innovations process

(ηik = Yik − hi(X̂−k ) with variance Vik = Hik P−k HT
ik

+ Rik )
• Don’t edit out measurements that are greater than 3Vik
• We process measurements that are up to 6Vik
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Practical Matters – Dealing with Measurement Latency

• Measurements aren’t so polite as to be time-tagged or to
arrive at the major cycle of the navigation filter (tk )

• Therefore, we need to process the measurements at the time
they are taken, assuming that the measurements are not too
latent
• Provided they are less than (say) 3 seconds latent

• The state is propagated back to the measurement time using,
say, a first-order integrator

Xm = Xk + f(Xk )∆t +
∂f
∂X

(Xk )f(Xk )∆t2

• The measurement partial mapping is done in much the same
way as it was done in ’batch estimation’
• Map the measurement sensitivity matrix at the time of the

measurement(H(Xm)) to the filter time (tk ) using the state
transition matrix, Φ(tm, tk ).
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Practical Matters – Measurement Underweighting
• Sometimes, when accurate measurements are introduced to

a state which isn’t all that accurate, filter instability results
• There are several ways to handle this

• Second-order Kalman Filters
• Sigma Point Kalman Filters
• Measurement Underweighting

• Since Apollo, measurement underweighting has been used
extensively

• What underweighting does is it slows down the rate that the
measurements decrease the covariance
• It approximates the second-order correction to the covariance

matrix
• Underweighting is typically implemented as

Kk = P−k HT
k

(
(1 + α)Hk P−k HT

k + Rk

)−1

• The scalar α is a ‘tuning’ parameter used to get good filter
performance
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Practical Matters – Filter Tuning (I)

• Regardless of how you slice it, tuning a navigation filter is an
‘art’

• There are (at least) two sets of ‘knobs’ one can turn to tune a
filter
• Process Noise (also called ‘State Noise’ or ‘Plant Noise’), Q,

the noise on the state dynamics
• Measurement Noise, R

• Filter tuning is performed in the context of Monte Carlo
simulations (1000’s of runs)

• FIlter designers begin with the expected noise parameters
• Process Noise – the size of the neglected dynamics (e.g. a

truncated gravity field)
• Measurement Noise – the sensor manufacturer’s noise

specifications
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Practical Matters – Filter Tuning (II)

• Sensor parameters (such as bias) are modeled as zero-mean
Gauss-Markov parameters, xp , which have two ‘tuning’
parameters
• The Steady State Variance (Ppss )
• The Time Constant (τ)

d
dt

xp = −
1
τp

xp + wp , where E[wp(t)wp(τ)] = Qpδ(t − τ)

Qp = 2
Ppss

τp

• All of these are ‘tuned’ in the Monte Carlo environment so that
• The state error remains mostly within the 3-σ bounds of the

filter covariance
• The filter covariance represents the computed sample

covariance
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Practical Matters – Filter Tuning (III)

• Sometimes the filter designer inadvertently chooses a process
noise such that the covariance of the state gets too small

• When this happens, the filter thinks it is very sure of itself – it
is smug

• The end result is that the filter starts rejecting measurements
• Never a good thing

• The solution to this problem is to inject enough process noise
to keep the filter ‘open’
• This allows the filter to process measurements appropriately

• There are several spacecraft which have experienced
problems because the designers have chosen incorrect (too
small) process noise

• Of course, this is nothing more than the classic tension
between ‘stability’ and ‘performance’
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Practical Matters – Invariance to Measurement Ordering

• Because of its nonlinear foundation, the performance of an
EKF can be highly dependent on the order in which
measurements are processed
• For example, if a system processes range and bearing

measurements, the performance of the EKF will be different if
the range is processed first versus if the bearing were
processed first

• To remedy this, on Orion we employ a hybrid linear/EKF
formulation
• The state and covariance updates are accumulated in delta

state and covariance variables
• The state and covariance are updated only after all the

measurements are processed
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Lessons Learned

“It may not be right, but it is not necessarily wrong!’

A Former NASA Engineer, 2013
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Numerical Checking

• It is vital to ensure that the measurement partials (H = ∂h
∂x ) are

calculated correctly
• This is done off-line by means of numerical differences to

approximate the derivative
• It should be axiomatic but If you think you have a ‘clever’ way

of reducing throughput, make sure you check it versus a
known result
• More than one filter has been purported and advertized to be a

‘Kalman’ Filter and flown just to find out that the fundamental
equations are incorrect

• Thankfully, these have not resulted in failures
• When the ‘correct’ equations were implemented, performance

improved drastically
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Preventing a Smug Filter or Filter Divergence

• Any GNC engineer intuitively grasps the trade-off between
stability and performance

• In aerospace navigation we balance filter stability with filter
performance

• We keep away from filter divergence at all costs, at the
expense of filter performance

• We add process noise to keep the filter ’open’, which has the
effect of ’slowing’ down the performance of the system.

• Better a slow filter than a divergent one!!!
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Getting to a Right Attitude

• Attitude Determination is sometimes part of the navigation
subsystem.
• At JSC, it has been part of the navigation filter during dynamic

phases of flight (ascent and entry)
• At JPL and GSFC, it is not part of the navigation function

because ’Navigation’ is their way of saying ’Ground-based
Navigation’

• Attitude can be represented in a variety of ways
• Direction Cosine Matrices
• Euler Angles
• Quaternions
• (Modified) Rodrigues Parameters (MRPs)
• Gibbs Parameters

• At JSC we choose quaternions for attitude and MRPs for
attitude errors

• We must be careful because attitude is not a vector space
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Advanced Topics

• The Kalman-Bucy Filter

• The Schmidt-Kalman Consider Filter

• The Kalman Smoother
• Square Root and Matrix Factorization Techniques

• Potter Square Root Filter (Apollo)
• Triangular Square Root Filters
• UDU Filter (Orion)

• Nonlinear Filters
• Second-Order Kalman Filters
• Sigma Point Kalman Filters
• Particle Filters
• Entropy Based / Bayesian Inference Filters

• Linear Covariance Analysis
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Conclusions

• Kalman Filtering and Least Squares Estimation are at the
heart of the spacecraft navigation
• Ground-based navigation
• On-board navigation

• Its purpose is to obtain the ‘best’ state of the vehicle given a
set of measurements and subject to the computational
constraints of flight software

• It requires fluency with several disciplines within engineering
and mathematics
• Statistics
• Numerical Algorithms and Analysis
• Linear and Nonlinear Analysis
• Sensor Hardware

• Challenges abound
• Increased demands on throughput
• Image-based sensors
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To put things in perspective

“I never, never want to be a pioneer . . . Its always best to come in
second, when you can look at all the mistakes the pioneers made
and then take advantage of them.”

Seymour Cray
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