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1. Foreword 
The following material is intended to supplement NASA-JSC's High School Aerospace Scholars 
(HAS) instructional reading.  The author, a retired veteran of 60 Space Shuttle flights at Mission 
Control's Flight Dynamics Officer (FDO) Console, first served as HAS mentor in association 
with a June 2008 workshop.  On that occasion, he noticed students were generally unfamiliar 
with the nature and design of spacecraft trajectories facilitating travel between Earth and Mars.  
Much of the specific trajectory design data appearing herein was developed during that and 
subsequent workshops as reference material for students integrating it into Mars mission 
timeline, spacecraft mass, landing site selection, and cost estimates.  Interplanetary Cruising is 
therefore submitted to HAS for student use both before and during Mars or other interplanetary 
mission planning workshops. 
 
Notation in this document distinguishes vectors from scalars using bold characters in a vector's 
variable name.  The "•" operator denotes a scalar product between two vectors.  If vectors a and 
b are represented with scalar coordinates such that a = (a1, a2, a3) and b = (b1, b2, b3) in some 3-
dimensional Cartesian system, a • b = a1 b1 + a2 b2 + a3 b3 = a b cos γ, where γ is the angle 
between a and b. 

2. Introduction 
Material in this reference will help us understand the pedigree and limitations applying to paths 
(trajectories) followed by spacecraft about the Sun as they "cruise" through interplanetary space.  
Although cruise between Earth and Mars is used in specific examples, this lesson's physics 
would apply to travel between any two reasonably isolated objects in our solar system.  The most 
advanced propulsion systems in existence now permit interplanetary travel under continuous 
thrust, but we'll simplify these more exotic trajectories by assuming all our spacecraft's rocket 
power is delivered as we depart or arrive at Earth or Mars.  In effect, our cruise will be a coast 
subject only to acceleration from gravity. 
 
As modeled by Johannes Kepler in 1605 to high accuracy, the orbits of Earth and Mars about the 
Sun are ellipses with the Sun lying at one focus.  This principle is known as Kepler's First Law 
and is a manifestation of Isaac Newton's Law of Universal Gravitation published in 1687.  
Except for a few days after departing or before arriving at Earth or Mars, our coasting 
spacecraft's trajectory is only affected to an appreciable extent by solar gravitational acceleration 
and obeys Kepler's First Law too.  Consequently, we'll make the further assumption that 
interplanetary cruise is only subject to acceleration from the Sun's gravity. 
 
The Sun-centered (heliocentric) elliptical motion assumption lets us invoke a very powerful 
spacecraft trajectory design technique known as Lambert's Theorem.  Published by Johann 
Lambert in 1761, Lambert's Theorem relates cruise time Δt between Earth and Mars to three 
geometric quantities.  Each of the geometric quantities, defined below, is illustrated in Figure 1 
for an example spacecraft trajectory from Earth to Mars. 
 

http://en.wikipedia.org/wiki/Johannes_Kepler
http://en.wikipedia.org/wiki/Isaac_Newton
http://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
http://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
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a ≡ mean solar distance (semi-major axis) pertaining to the interplanetary cruise ellipse 
rD + rA ≡ the sum of heliocentric distances at departure and arrival in the interplanetary cruise 

ellipse 
c ≡ the distance (chord) between heliocentric departure and arrival positions in the 

interplanetary cruise ellipse 
 

 
Figure 1.  Lambert's Theorem parameters are illustrated in a heliocentric Earth-to-Mars 
interplanetary cruise ellipse.  The difference between rD and rA is exaggerated for clarity.  
Roughly spherical regions of space in which Earth and Mars gravity dominate the Sun's 
have radii less than 1% of rD.  Consequently, the heliocentric cruise ellipse accurately 
describes 99% of the Earth-to-Mars trajectory.  The heliocentric transfer angle θ  is also 
illustrated. 
 
We'll use the "patched conic" approximation to seamlessly merge a heliocentric interplanetary 
cruise ellipse with a planet-centered hyperbolic trajectory near departure or arrival.  Because a 
planet's gravity field is miniscule on the scale of the Sun's, velocity in the Sun-centered ellipse 
becomes asymptotic velocity in the planet-centered hyperbola when the planet's heliocentric 
velocity is subtracted from our spacecraft's heliocentric velocity.  Magnitude of the planet-
centered asymptotic velocity is termed sD at departure, sA at arrival, and hyperbolic excess speed 
vHE generically.  The "excess" speed is with respect to a marginal parabolic escape into 
interplanetary space with zero vHE. In other references, vHE is termed   

€ 

v
∞
 because this velocity is 

asymptotically approached in the limit of infinite planet-centered distance. 
 
To planet-centered trajectories, we'll apply the principle of total energy (kinetic plus potential) 
invariance, known as the vis viva energy integral.  With the energy integral, we can compute 
planet-centered velocity magnitude (speed) at any planet-centered distance along a specific conic 
trajectory if we know speed at any other distance along that same trajectory.  We're then able to 
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compute the change-in-velocity magnitude Δv associated with injecting our spacecraft into one 
trajectory from another. 
 
Finally, we'll use the rocket equation to relate a specified Δv, our spacecraft's mass, payload 
mass aboard our spacecraft, and propulsive efficiency to the propellant mass required to achieve 
Δv.  The rocket equation is typically applied in stages such that total mass before Δv is imparted, 
or some logical component of it, is equivalent to payload mass in the previous stage.  In this 
manner, total mass prior to Earth departure can be estimated and related to mission cost.  This 
cost-driving relationship is informally referred to as "the tyranny of the rocket equation" in the 
field of astronautics. 

3. Lambert Solutions 
Lambert's Theorem is typically applied to solution of a boundary value problem in which 
departure time tD and departure planet are specified, together with arrival time tA and arrival 
planet.  These Lambert boundary conditions (LBCs) are used with well-documented theories of 
Earth and Mars orbit motion (ephemerides) to generate heliocentric vector positions rD and rA.  
From these positions, scalars rD, rA, and c are readily computed, and Δt = tA - tD.  The Lambert 
equation relating Δt to a, rD + rA, and c is then iteratively solved for a, defining the interplanetary 
cruise ellipse. 
 
The spacecraft trajectory illustrated by Figure 1 is known as a "short-way" Lambert solution 
because its heliocentric arc subtends a transfer angle θ < 180°.  A second Lambert solution 
defined by Figure 1's rD and rA is the "long-way" trajectory on a different interplanetary cruise 
ellipse1 and subtending 360° - θ > 180°.  In practice, we'll therefore supplement LBCs with a 
short-way/long-way choice.  For otherwise identical LBCs, we'll find it easy to exclude either the 
short-way or long-way solution from further consideration because one of these two trajectories 
will cruise about the Sun in a direction contrary (retrograde) to that of Earth and Mars.  Getting 
our spacecraft onto a retrograde heliocentric trajectory is Δv-prohibitive because the departure 
planet's speed about the Sun must first be cancelled before additional motion in the opposite 
direction is imparted.  To minimize propellant consumption, our spacecraft trajectory must match 
departure planet heliocentric velocity at departure (and arrival planet heliocentric velocity at 
arrival) as closely as possible. 
 
There's actually a further proliferation of Lambert solutions defined by rD and rA if we're willing 
to increase Δt to more than an orbit period in the interplanetary cruise ellipse.  We'll ignore 
solutions with θ ≥ 360° in this discussion, as we're not interested in cruising to and from Mars 
any longer than necessary. 
 
Finally, we should be acutely aware of Lambert solutions with θ near 180° that are marginally 
short-way or long-way.  Corresponding spacecraft trajectories are very nearly Hohmann 
transfers, sometimes cited as the most propellant-efficient interplanetary trajectories.  This would 

                                                
1 If Δt is too small, the long-way solution may require speed sufficient to escape the solar system.  Under these 
conditions, the interplanetary trajectory becomes a hyperbola. 
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indeed be the case if departure and arrival heliocentric planetary orbits were exactly co-planar.  
Unfortunately, Mars's orbit plane is tilted (inclined) 1.85° with respect to Earth's (the ecliptic).  
When rD and rA are very nearly in opposite directions from the Sun, our spacecraft's trajectory 
plane is poorly defined.  Consequently, Mars's ecliptic inclination can produce Lambert solutions 
with ecliptic inclinations approaching 90° when θ is near 180°. 
 
Near-Hohmann cruise trajectories are usually extreme "gas-guzzlers" because departing the 
ecliptic plane always entails a large spacecraft velocity change at Earth and Mars.  The only 
exception would be the very special case when θ is exactly 180° and Mars lies at one of two 
points (nodes) where its orbit crosses the ecliptic exactly as your spacecraft arrives at or departs 
from Mars.  In these unlikely cases, Lambert solutions may still have appreciable ecliptic 
inclinations depending on how co-linear rD and rA are interpreted by solution computations.  
Geometrically speaking, θ = 180° is a Lambert Theorem singularity leading to an infinite 
number of equally valid solutions corresponding to all possible heliocentric planes. 
 
With these Lambert Theorem fundamentals understood, we're equipped to design coasted 
interplanetary cruise trajectories using "minimum impulse" while we await invention of the warp 
drive.  In the following section, we'll learn how to organize and interpret large numbers of 
Lambert solutions in order to optimize interplanetary trajectories for minimal propellant 
consumption. 

4. The Pork Chop Chart (PCC) 
A PCC is a two-dimensional matrix of values from an ordered array of Lambert solutions.  The 
element value assigned to each solution in the matrix "maps" a third dimension and may be any 
single variable relatable to all the solutions.  In PCC examples to follow, we will confine 
ourselves to planet-centered departure speed sD or arrival speed sA matrix values2.  Each column 
in the matrix pertains to a particular Lambert solution departure time tD, and each row pertains to 
a specific Lambert solution arrival time tA. 
 
To better understand the utility of PCCs, let's construct an analogy between them and contour 
maps.  In this concept, tD corresponds to longitude, tA corresponds to latitude, and sD or sA 
corresponds to altitude.  Indeed, interplanetary mission planners often plot contours from the 
digital data in PCCs we'll be discussing.  Typically, these contours are roughly triangular and 
reminiscent of a pork chop in shape.  In the case of sD or sA contours, we're seeking out the 
"valleys" and other "low spots" for our mission trajectories.  Instead of contours, we'll retain 
digital values in a matrix and color-code them to indicate low (green), intermediate (yellow), or 
high (red) speeds.  When we pick an acceptable value from a PCC, we'll effectively be fixing 
departure and arrival times for our outbound or return interplanetary cruise trajectory. 
 
By convention, PCCs we'll discuss are rectangular matrices with tD increasing rightward and tA 
increasing downward.  Depending on the tD and tA values spanned by columns and rows in a 

                                                
2 Because we're neglecting accelerations from Earth and Mars gravity in the heliocentric interplanetary cruise 
ellipse, it's important to remember these planet-centered speeds only apply a couple days after departure from or a 
couple days before arrival at the planet of interest. 
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particular PCC, some matrix elements may correspond to Δt ≤ 0 (a trajectory arriving before or 
as it departs).  Since these elements are nonsensical to our purposes, we'll see them as blanks 
without any values in the PCC.  These void regions in an otherwise rectangular PCC matrix are 
typically bordered by elements corresponding to very short, but positive, Δt.  Since high speed is 
required to cover interplanetary distances in a short time, elements bordering matrix voids are 
usually color-coded red. 

5. Outbound Earth-To-Mars Cruise 
Accurately foretelling the pace of technology is doomed to failure, but let's assume we're not 
ready to begin human exploration of Mars until the year 2030.  Figure 2 contains heliocentric 
plots of Earth and Mars ephemerides projected onto the ecliptic plane during that year.  Because 
Earth's orbit coincides with the ecliptic and Mars's orbit is inclined to the ecliptic by only 1.85°, 
these projections introduce negligible geometric distortion.  Each planet's Figure 2 orbit is 
annotated with "+" time ticks every 30 days.  Ticks are each labeled with the corresponding 
calendar date in "yyyy-mm-dd" format. 
 

 
Figure 2.  Earth and Mars heliocentric motion plotted during the year 2030. 
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Casual inspection of Figure 2 shows Earth and Mars to be on different sides of the Sun 
throughout 2030.  A closer look indicates the two planets are opposite the Sun (in conjunction) 
shortly after May 18, 2030.  From Figure 2, we can see Earth completes an orbit about the Sun in 
little more than half the time Mars requires, and it's logical to assume a spacecraft cruising 
between the two planets would move at an intermediate heliocentric speed.  We therefore need to 
look for Earth departure times when Mars is about to be "lapped" by Earth.  By the end of 2030, 
Figure 2 indicates this desirable phasing relationship between Earth and Mars will occur in 2031. 
 
Figures 3 and 4 are short-way PCCs respectively containing sD values departing from Earth3 and 
sA values arriving at Mars in the year 2031.  With 14 departure time columns and 14 arrival time 
rows, speeds from nearly 200 Lambert solutions appear in each PCC.  Feel free to zoom in for a 
closer look at the numbers!  Note that dates appear in these PCCs using "mm/dd/yy" format. 
 

 
Figure 3.  Earth-centered Earth departure speed sD (km/s) PCC. 
 

 
Figure 4.  Mars-centered Mars arrival speed sA (km/s) PCC. 
 
Even a quick glance at color-coding in Figures 3 and 4 shows the desirable green regions don't 
completely overlap.  Depending on the propulsion available to our spacecraft at departure and 
arrival, it may be desirable to minimize one set of speeds at the expense of the other, or strike a 
compromise between the two.  If Earth launch postponements are likely, it may be wise to select 
the earliest practical departure time. 
 
Values outlined by black boxes in Figures 3 and 4, corresponding to Earth departure on February 
20 and Mars arrival on August 19 in 2031, lead to the example heliocentric cruise trajectory from 
Earth to Mars plotted in Figure 5.  This 6-month example voyage is but one of many possible 

                                                
3 Launch vehicle manufacturers often quantify performance in terms of delivered payload mass versus achieved C3, 
where C3 = sD

2.  When C3 < 0, escape into interplanetary space cannot be achieved for the specified payload mass. 
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outbound cruise trajectories.  Because the outbound cruise example is inclined to the ecliptic by 
only 1.89°, Figure 5 plots are all projected onto the ecliptic, as were those in Figure 2. 
 

 
Figure 5.  Heliocentric cruise trajectory departing from Earth on February 20, 2031 and 
arriving at Mars on August 19, 2031. 
 
A small sub-matrix of relatively large speeds reside in the lower left corners of Figures 3 and 4.  
These PCC elements correspond to near-Hohmann cruises through heliocentric angles slightly 
less than 180°.  Let's consider the 8-month cruise departing from Earth on January 1 and arriving 
at Mars on September 1 in 2031.  This example is plotted in Figure 6.  Like Figures 2 and 5, 
Figure 6 is heliocentric, but its perspective is different.  Figures 2 and 5 are viewed from a 
perspective looking perpendicular to the ecliptic plane because all plots in these illustrations lie 
within 2° of this plane.  Figure 6 is viewed from a perspective 60° away from perpendicular to 
the ecliptic so we can see the near-Hohmann trajectory's motion out of the ecliptic plane.  
Distance from the ecliptic plane in Figure 6 appears as dotted lines projected from each time tick.  
Earth's heliocentric orbit plane coincides with the ecliptic by definition, so no dotted lines are 
visible in its Figure 6 plot.  Short dotted lines are associated with the Mars plot since its ecliptic 
inclination is 1.85°.  In contrast, the near-Hohmann trajectory plot is inclined to the ecliptic by 
10.41°, making for relatively prominent dotted projection lines in Figure 6.  It's this motion out 
of the ecliptic plane that contributes relatively large speeds with respect to Earth and Mars in the 
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near-Hohmann regions of Figures 3 and 4.  These are obviously PCC regions to avoid in our 
outbound mission planning! 
 

 
Figure 6.  A nearly Hohmann heliocentric cruise trajectory departs from Earth on January 
1, 2031 and arrives at Mars on September 1, 2031.  Note how a straight line from departure 
to arrival nearly intercepts the Sun, indicating the heliocentric transfer angle θ  is nearly 
180°.  Because Mars doesn't lie in the ecliptic plane at arrival, the cruise trajectory is 
forced to depart the ecliptic to a significantly large degree, as indicated by dotted blue 
projection lines. 

6. Return Mars-To-Earth Cruise 
Since we're confined to cruise intervals between Earth and Mars lasting 6 months or more, 
Figure 5 tells us a sobering story about our return trip.  By the time we reach Mars in late 2031, 
Earth has already phased ahead of us in orbit around the Sun to the point a cruise lasting 6 
months or so can't catch up without taking a "short-cut" inside Earth's orbit.  Considering this 
"best departure before arrival" paradox at Mars, it's no surprise both sD from Mars and sA at Earth 
for these short-cut return trajectories would be color-coded red on a PCC. 
 
Under interplanetary cruise constraints we've previously adopted, our only remedy is to wait at 
Mars until Earth begins to close in from behind again.  The "cycle-time" (synodic period) 
required for Earth to phase completely around the Sun with respect to the Mars-Sun line is 780 
days, or a bit less than 26 months.  That means our return cruise short-way PCCs, as shown in 
Figures 7 and 8, need to span dates in the year 2033. 
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Figure 7.  Mars-centered Mars departure speed sD (km/s) PCC. 
 

 
Figure 8.  Earth-centered Earth arrival speed sA (km/s) PCC. 
 
Slightly favoring minimal Mars departure speed over that at Earth arrival, PCC elements outlined 
by black boxes in Figures 7 and 8 indicate a return cruise departing from Mars January 21 and 
arriving at Earth on August 30 in 2033 has been selected as an example for plotting in Figure 9.  
We might select a similar return option if our spacecraft will use acceleration from Earth 
atmospheric friction to slow its return speed.  Should Earth return require propulsive braking, 
however, a delayed Mars departure and delayed Earth return may be advisable.  Because the 
return cruise has ecliptic inclination of only 1.66°, Figure 9 perspective is again normal to the 
ecliptic as in Figures 2 and 5. 
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Figure 9.  Heliocentric cruise trajectory departing from Mars on January 21, 2033 and 
arriving at Earth on August 30, 2033. 

7. Planet-Centered Trajectory Transfers To And From 
Interplanetary Space 

In departing from (or arriving at) a planet, we generally want to start from (or end in) a circular 
orbit with planet-centered radius rC and moving at planet-centered speed vC.  To transfer between 
a planet-centered departure or arrival hyperbola and the circular orbit, a change-in-velocity 
magnitude Δv is necessary.  For simplicity, we'll assume this Δv is provided instantaneously by 
propulsion, but it will require at least 5 to 10 minutes to achieve Δv depending on propulsive 
thrust and spacecraft mass.  In the arrival case, it may also be possible to obtain Δv and initiate 
transfer to the desired circular orbit using friction from passage through the planet's upper 
atmosphere in a process called aero-capture. 
 
When we obtain an sD (or sA) value from a PCC, we can't immediately relate that speed to the 
required transfer Δv from (or to) the circular orbit.  That's because these asymptotic speeds are 
only valid at the edge of interplanetary space, days away from actual planetary departure or 
arrival.  This "gravitational frontier" is the appropriate region in which to connect a departure or 
arrival planet-centered hyperbolic trajectory with the heliocentric interplanetary cruise ellipse in 
accord with patched conic theory.  On the "flat" periphery of a planet's 3-dimensional gravity 

http://en.wikipedia.org/wiki/Gravity_well
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well, less than one million km across in the case of Earth or Mars, the hyperbola and ellipse 
blend into each other and are effectively indistinguishable.  To compute Δv, we must first 
understand how our spacecraft's planet-centered energy varies in the planet's gravity well. 
 
Early in the twentieth century, Hermann Oberth discovered that change in specific kinetic 
energy4 exerted by a specified Δv depends on the speed at which Δv is applied5.  This principle 
has come to be known as the Oberth effect.  If our spacecraft has planet-centered velocity v 
initially, the change in specific kinetic energy ΔE resulting from a change-in-velocity Δv can be 
expressed as follows. 
 

      

€ 

ΔE =  
v +  Δv( ) • v +  Δv( ) -  v • v

2  
 

      

€ 

ΔE =  
2 v • Δv +  Δv 2

2
 (7.1) 

 
For a fixed Δv, Equation 7.1 has two ΔE extrema related to steering, the direction in which Δv is 
applied.  A maximum ΔE will result if Δv is applied in the same direction as v, and a minimum 
ΔE will result if Δv is applied in the direction opposed to v.  In either case, the extremum will be 
enhanced in direct proportion to v. 
 
How can we maximize v and the Oberth effect as we arrive at (or depart from) a planet?  An 
intuitive answer is suggested by visualizing our spacecraft's fall into a planet's gravity well along 
a hyperbolic approach trajectory.  If we start at sA and fall as far as possible into this well, 
minimizing rC without venturing too deep in the planet's atmosphere, potential energy will be 
transformed into kinetic energy to the greatest extent possible, thereby maximizing v.  We can 
quantify this effect with the vis viva energy integral given in Equation 7.2. 
 

µ ≡ reduced mass of the planet, equal to the product of the universal gravitation constant 
with the sum of the planet's mass and our spacecraft's relatively miniscule mass 

r ≡ planet-centered spacecraft distance 
a ≡ planet-centered conic trajectory semi-major axis 
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Depending on the conic trajectory of interest, Equation 7.2 can take on multiple specific forms.  
In the case of a circular trajectory, a = r, and Equation 7.3 results. 
 

                                                
4 With specific kinetic energy, we ignore our spacecraft's mass and are only concerned with changes in its speed.  
We'll study propellant mass computations required to obtain Δv later. 
5 Reference NASA TT F-622, "Ways To Spaceflight", a translation of Oberth's "Wege zur Raumschiffahrt" 
published by R. Oldenbourg Verlag in Munich-Berlin during 1929, p. 200.  This document may be downloaded 
from http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720008133_1972008133.pdf [accessed 9 October 2011]. 

http://en.wikipedia.org/wiki/Gravity_well
http://en.wikipedia.org/wiki/Hermann_Oberth
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vC  =  
µ
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 (7.3) 

 
In the case of an arrival or departure hyperbola, consider Equation 7.2 under asymptotic 
conditions with r = 

€ 

∞ .  Planet-centered motion at infinite distance is hyperbolic excess speed 
vHE.  Thus, Equation 7.2 leads to the following expression valid for any specific hyperbola. 
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1
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2

µ
 (7.4) 

 
When Equation 7.4 is substituted into Equation 7.2, a very useful hyperbolic trajectory energy 
equation results. 
 

    

€ 

v =  
2µ
r

 +  vHE

2  (7.5) 

 
The significance of Equation 7.5 is vHE's equivalence to an sD or sA value obtained from a PCC.  
With a PCC value substituted into Equation 7.5 along with r = rC, hyperbolic departure or arrival 
speed can be computed for the desired circular orbit radius.  Equations 7.3 and 7.5 confirm our 
earlier intuitive assertion that the Oberth effect and v are maximum when r, and therefore rC, are 
minimal. 
 
In summary, Δv is simply Equation 7.3 subtracted from Equation 7.5 when both are evaluated 
with r = rC.  At planetary departure, we want the greatest possible ΔE, so Equation 7.1 has our 
spacecraft flying "nose forward" to align Δv with v.  Conversely, Equation 7.1 has us flying "tail 
forward" at planetary arrival.  Precision avionics systems in our spacecraft will break Δv into tiny 
segments and ensure steering relationships with respect to v are satisfied every few seconds. 
 
Table 1 provides data relevant to evaluating the energy integral near Earth, Mars, and the Moon.  
The value of R provides the radius of each body's approximate spherical surface, and H0 is the 
minimum recommended height above R for safe orbit motion.  To maximize the Oberth effect, 
we'll therefore use rC = R + H0 in a particular planet-centered context. 
 
Table 1.  A collection of useful constants for evaluating the energy integral associated with 
conic trajectories centered on Earth, Mars, and the Moon. 

 µ  (km3/s2) R (km) H0 (km) 
Earth 398,600.440 6378.136 185 
Mars 42,828.3 3394.0 380 
Moon 4902.798 1737.53 100 

 
Let's perform a numeric example of energy integral computations using a Mars arrival context.  
Procedural steps and results follow. 
 

1) Obtain µ = 42,828.3 km3/s2 for Mars-centered trajectories from Table 1. 
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2) Compute rC = 3394.0 + 380 = 3774.0 km for Mars values in Table 1. 
 
3) Obtain vHE = 4.768 km/s from the boxed value in Figure 4. 
 
4) Substitute Step 2's rC value for r in Equation 7.5 and obtain v = 6.740 km/s.  This is the 

speed with which our spacecraft arrives at rC, and its motion is assumed tangent to the 
desired circular orbit to minimize steering inefficiencies in accord with Equation 7.1.  
Because any trajectory tangent to a circular orbit has zero planet-centered radial velocity, 
rC is also the arrival hyperbola's periapsis or closest approach to Mars. 

 
5) Substitute Step 2's rC value for r in Equation 7.3 and obtain vC = 3.369 km/s. 
 
6) Assuming the speeds obtained in Steps 4 and 5 correspond to Mars-centered velocity 

vectors with identical directions, obtain Δv = v - vC = 3.371 km/s.  This is the degree to 
which Mars-centered speed must be reduced by a Mars orbit insertion (MOI) maneuver 
in accord with the Figure 5 heliocentric trajectory. 

 
Similar procedures can be used to compute Δv in Earth departure, Mars departure, and Earth 
return contexts.  Small bodies, such as near-Earth objects (NEOs), effectively have µ = 0.  In 
such cases, there is no gravity well to fall into from interplanetary space, and Equation 7.5 
reduces to v = vHE.  If Earth return is planned to utilize atmospheric braking, rEI = 6378.136 + 
121.92 = 6500.056 km can be used to determine Earth-centered entry interface speed vEI when 
rEI is substituted for r in Equation 7.5.  At rEI, thermal and mechanical loads on a returning 
spacecraft first become appreciable and will rapidly increase with further descent.  A typical 
Earth return from the Moon has vEI = 11 km/s.  With a crewed entry vehicle's mass near 10,000 
kg, safe Earth entry and landing will challenge foreseeable technology at vEI > 12 km/s. 

8. The Rocket Equation's Tyranny 
The rocket equation may take many forms.  One of them appears in Equation 8.3 below, where 
"exp" denotes the natural exponential function whose base is approximately 2.71828. 
 

mA ≡ spacecraft total mass after Δv is imparted 
mY ≡ payload mass aboard spacecraft while Δv is imparted 
mP ≡ spacecraft propellant mass required to impart Δv 
mB ≡ spacecraft total mass before Δv is imparted = mA + mY + mP (8.1) 
g ≡ Earth gravity acceleration = 0.00980665 km/s2 
ISP ≡ propulsion system specific impulse used to impart Δv 
vX ≡ propulsion system exhaust speed = g ISP (8.2) 
mB = (mA + mY) exp(Δv/vX) (8.3) 

 
From Equation 8.3, it's evident we prefer propulsion systems with the highest practical ISP and vX 
performance values.  Each time Δv increases by vX, the ratio mB / (mA + mY) increases by a factor 
of 2.72 just from increased mP.  If our spacecraft's propellant tanks aren't designed to 



Interplanetary Cruising 

Daniel R. Adamo  2 October 2011 14 

accommodate increased mP, mA must also be increased.  This snowballing effect on mB can be 
compounded when a mission requires multiple Δv propulsive impulses.  We'll call each such 
impulse a stage.  During a mission to Mars, stages might include Earth departure, Mars arrival, 
Mars descent, Mars ascent, Mars departure, and Earth return.  Each stage has its own Δv 
contribution to make, and such is the tyranny of the rocket equation. 
 
The ISP associated with a propulsion system is defined as the time this system consumes a unit of 
propellant in Earth weight (the product of propellant mass and g) while generating a unit of 
propulsive thrust.  Examples of propulsion systems and the efficiency they achieve as measured 
by ISP appear in Table 2. 
 
Table 2.  Different propulsion systems are listed for comparison.  Note the general trend in 
which thrust reduces with increased efficiency (ISP).  A range of ISP values is given for 
systems operating at sea level and in a near vacuum. 

System Propellant Thrust (N) ISP (s) 
Shuttle SRB Storable solids 12 million 242 to 268 
Saturn V F-1 LOX and storable RP-1 6.77 million 263 
Shuttle OMS Storable hypergolics 27,000 313 

Aerojet Prototype LOX and LCH4 24,000 345 
Saturn V J-2 LOX and LH2 1.033 million 421 

SSME (RS-25) LOX and LH2 1.8 million 363 to 453 
Nuclear Thermal (NERVA) LH2 333,600 850 

Solar Electric (Dawn) Storable Xe 0.090 3100 
VASIMR VX-200 Storable Ar 5 5000 

 
The type of propulsion system to be used in a particular stage depends on multiple factors.  
Cryogenic propellant such as liquid oxygen (LOX), liquid hydrogen (LH2) or liquid methane 
(LCH4) may be impractical to store aboard our spacecraft for long periods.  Radioactive systems 
will be inappropriate for use near Earth or other sensitive habitats.  Highly efficient systems with 
low thrust cannot be used during launch from a planetary surface if weight greatly exceeds 
thrust.  Likewise, low-thrust systems may be inappropriate for human transport because they 
tend to slowly spiral out of or into a planet's gravity well, adding significantly to departure or 
arrival time.  Figure 10 is an example of such a trajectory spiral.  It illustrates a 19-day segment 
of the robotic Dawn probe's arrival at main belt asteroid (4) Vesta, whose very shallow gravity 
well has µ = 17.8 km3/s2. 
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Figure 10.  The robotic spacecraft Dawn's descent at main belt asteroid (4) Vesta is plotted 
from survey orbit departure to high altitude mapping orbit arrival 19 days later under 
solar electric propulsion (SEP).  Acceleration from SEP exerted on Dawn is about 0.1 
mm/s2, but this acceleration can be maintained for 2000 days with the 425 kg of Xe loaded 
at launch. 
 
Typically, mB on a given stage (or perhaps its associated mP) is a component of mY on the 
previous stage.  Because earlier stages tend to be dependent on later ones, it's usually necessary 
to obtain masses for a later stage first and work chronologically backward though a mission's 
timeline.  Exceptions can arise, however.  It's possible to pre-emplace components for certain 
stages such that our spacecraft doesn't have to transport this mass from Earth.  We could send a 
Mars habitat from Earth to Mars before our spacecraft even leaves Earth, but that only turns one 
Earth departure into two.  It doesn't reduce total mass departing Earth for our mission, but a 
technique called in-situ resource utilization (ISRU) could make dramatic reductions.  For 
example, if mP can be produced from material on Mars local to our planned landing site, only the 
material processing mass has to be pre-emplaced.  We'd then have easy access to the equivalent 
of an interplanetary service station on Mars at which to "tank up" before starting our return 
journey.  The ISRU concept will likely become a means to establish new extraterrestrial 
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economies some day.  As with any successful business, the key to profitable ISRU is the old 
adage "location, location, location".  The rocket equation's tyranny prohibits taking advantage of 
pre-emplaced mass if a detour requiring appreciable Δv is necessary to access that mass. 
 
The mA + mY factor in Equation 8.3 can be augmented with additional terms as our spacecraft's 
design requires.  For example, we can redefine mA as mA', with the latter excluding propulsion 
system mass mS (tankage, propellant lines, and engines).  Then we can express mS according to 
Equation 8.4 such that it scales linearly with mP. 
 

k ≡ dimensionless constant near 0.15 for chemical propulsion systems in which combustion 
between a fuel and an oxidizer provides thrust 

mS = k mP (8.4) 
 
In terms of mA' and mS, the rocket equation is expressed as Equation 8.5. 
 

mP + k mP + mA' + mY = (k mP + mA' + mY) exp(Δv/vX) (8.5) 
 
Equation 8.6 is a useful solution for mP obtained from Equation 8.5 in terms of other mass 
components, k, Δv, and vX.  All these quantities should be known from our spacecraft and 
mission design at a particular stage. 
 

    

€ 

mP =  
mA' +  mY( ) exp Δv / vX[ ] -  1( )

1 +  k 1 -  exp Δv / vX[ ]( )
 (8.6) 

 
Yet another aspect of the rocket equation's tyranny is imbedded in Equation 8.6's denominator.  
As Δv increases from zero toward a critical value ΔvK, mP increases toward 

€ 

+∞ .  At Δv > ΔvK, 
nonsensical negative mP is obtained from Equation 8.6.  Consequently, even if special relativity 
is ignored, a propulsive system cannot deliver unlimited Δv.  Equation 8.7 is the formula for ΔvK 
obtained by setting the denominator of Equation 8.6 to zero and solving for Δv.  The natural 
logarithm function appears as "    

€ 

n" in Equation 8.7. 
 

      

€ 

ΔvK  =  vX  n 1 +  1 / k( ) (8.7) 
 
Let's apply formulae from this section to the MOI stage numeric example related previously.  
Procedural steps and results follow. 
 

1) From the MOI stage example, we already have Δv = 3.371 km/s. 
 
2) Assume we have a high-thrust nuclear thermal propulsion system supporting the MOI 

stage with ISP = 800 s and k = 0.15.  Equation 8.2 gives vX = 7.845 km/s for this system.  
Equation 8.7 indicates this system can perform MOI because ΔvK = 15.980 km/s > Δv. 

 
3) Assume our spacecraft's mass without propellant or propulsive systems is mA' = 180,000 

kg.  Further assume our spacecraft carries mY = 55,000 kg to support operations in the 
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vicinity of Mars.  Equation 8.6 produces mP = 137,213 kg for the MOI stage, and 
Equation 8.4 determines mS = 20,582 kg.  From the left side of Equation 8.5, we can infer 
mB = 392,795 kg.  This is a mass not very different from that of International Space 
Station (ISS) when its assembly was completed in 2011.  Unlike ISS, this mB has to be 
sent on its way toward Mars with an Earth-centered asymptotic speed sD = 3.710 km/s 
(reference the boxed value in Figure 3) as it enters interplanetary space. 

 
In the Earth departure stage preceding the MOI stage, the mB computed in Step 3 must be 
absorbed by mA' or mY.  Because mP for the Earth departure stage will be even greater than that 
for MOI, mS will grow proportionally.  It may be advisable to jettison some of the Earth 
departure mS as otherwise dead weight if its capacity can't be used later in the mission.  Drop 
tanks, whose propellant is consumed during Earth departure, can facilitate this jettison. 

9. Conclusion 
Welcome back to Earth!  Our example round trip requires an outbound cruise to Mars lasting 6 
months, a loiter period at Mars lasting 17 months, and a return to Earth cruise lasting 7 months.  
We'll be away from home a total of 30 months, or 2.5 years.  Although most of our journey is 
presumably spent exploring Mars, using warp drive for propulsion is starting to sound better and 
better! 
 
We now have a basic understanding of considerations, techniques, and terminology applicable to 
interplanetary spacecraft and mission design.  It's like having a rocket scientist learner's permit to 
drive on the interplanetary superhighway.  Enjoy the ride, and be careful out there! 
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