

eyebrows of a man standing close by. And, of course, a person in the direct path of a pebble-sized meteor could be severely injured. A fragile piece of machinery could be destroyed, and it's even possible that the entire rocket ship would have to be abandoned after sustaining one or more hits by space projectiles that size (astronomers estimate that one out of 10 ships on a 16-month voyage might be damaged badly, although even that is unlikely).

If one of the Mars-bound vehicles does suffer serious damage, the incident needn't be disastrous. In a pinch, a disabled space vehicle can be abandoned easily. All of the ships will carry small self-propelled craft-space taxis-which are easily built and easily maneuvered. They will be fully pressurized, and will be used for routine trips between the ships of the convoy, as well as for emergencies. If for some reason the space taxis aren't available to the occupants of a damaged ship, they will be able to don pressurized suits and step calmly out into space. Individual rocket guns, manually operated, will enable each of them to make his way to the nearest space ship in the convoy. Spacesuited explorers will have no difficulty traveling between ships. There's no air to impede motion, no gravitational pull and no sense of speed. When they leave their ship the men will have to over-come only their own inertia. They'll be traveling through the solar system at more than 70,000 miles an hour, but they will be no more aware of it than we on earth are aware that every molecule of our bodies is moving at a speed of 66,600 miles an hour around the sun.

Science ultimately will solve the problems posed by cosmic rays, meteors and the other natural phenomena of space. But man will still face one great hazard: himself.

Man must breathe. He must guard himself Collier's for April 30, 1954 Top diagram shows positions of earth and Mars at times of arrival and departure, and routes followed in both directions. Drawing at left depicts take-off maneuver from an orbit 1,000 miles above earth's equator (note polar orbit of original earth space station, which might be built within next 15 or 20 years). Mars vehicles cut power 5,700 miles from the earth and coast rest of the way through space. At right, fleet of 10 rocket ships approaches to within about 600 miles of Mars, establishes itself in orbit and launches first of three landing planes toward Martian polar area for snow landing. After landing, advance party abandons plane and travels on tractors 4,000 miles to equator, where it prepares a landing strip for expedition members in other planes

against a great variety of illnesses and ailments. He must be entertained. And he must be protected from many psychological hazards, some of them still obscure.

How will science provide a synthetic atmosphere within the space-ship cabins and Martian dwellings for two and a half years? When men are locked into a confined, airtight area for only a few days or weeks oxygen can be replenished, and exhaled carbon dioxide and other impurities extracted, without difficulty. Submarine engineers solved the problem long ago. But a conventional submarine surfaces after a brief submersion and blows out its stale air. High-altitude pressurized aircraft have mechanisms which automatically introduce fresh air and expel contaminated air.

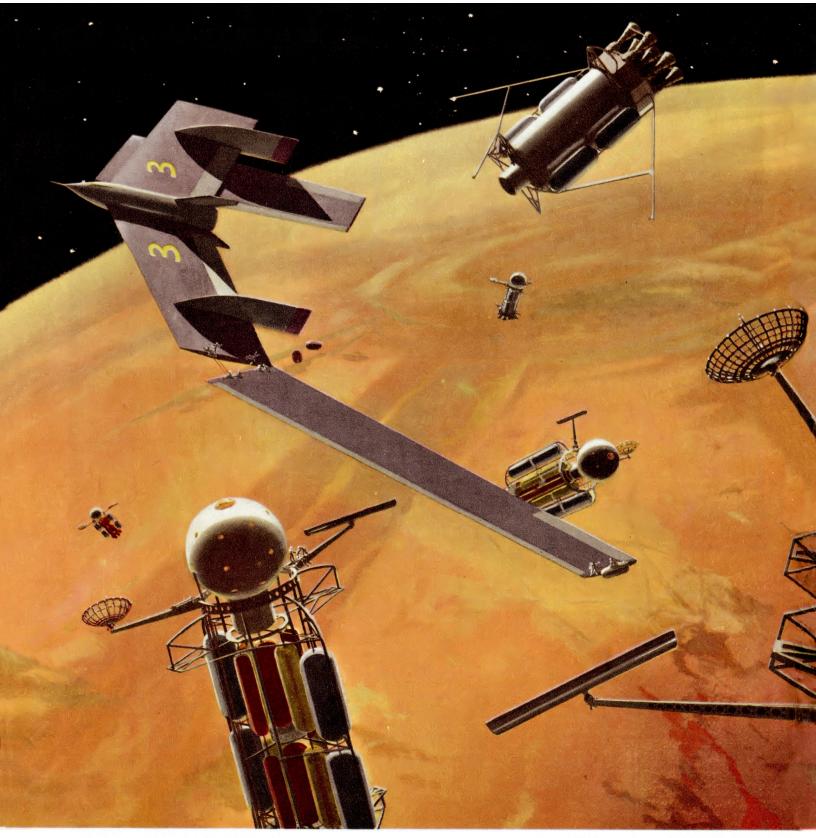
There's no breathable air in space or on Mars; the men who visit the red planet will have to carry with them enough oxygen to last many months.

When Men Live Too Close Together

During that time they will live, work and perform all bodily functions within the cramped confines of a rocket-ship cabin or a pressurized—and probably mobile—Martian dwelling. (I believe the first men to visit Mars will take along inflatable, spherical cabins, perhaps 30 feet across, which can be mounted atop tractor chassis.) Even with plenty of oxygen, the atmosphere in those living quarters is sure to pose a problem.

Within the small cabins, the expedition members will wash, perform personal functions, sweat, cough, cook, create garbage. Every one of those activities will feed poisons into the synthetic air just as they do within the earth's atmosphere.

No less than 29 toxic agents are generated during the daily routine of the average American household. Some of them are body wastes, others come from cooking. When you fry an egg, the burned fat releases a potent irritant called acrolein. Its effect is negligible on earth because the amount is so small that it's almost instantly dissipated in the air. But that microscopic quantity of acrolein in the personnel quarters of a Mars expedition could prove dangerous; unless there was some way to remove it from the atmosphere it would be circulated again and again through the air-conditioning system.

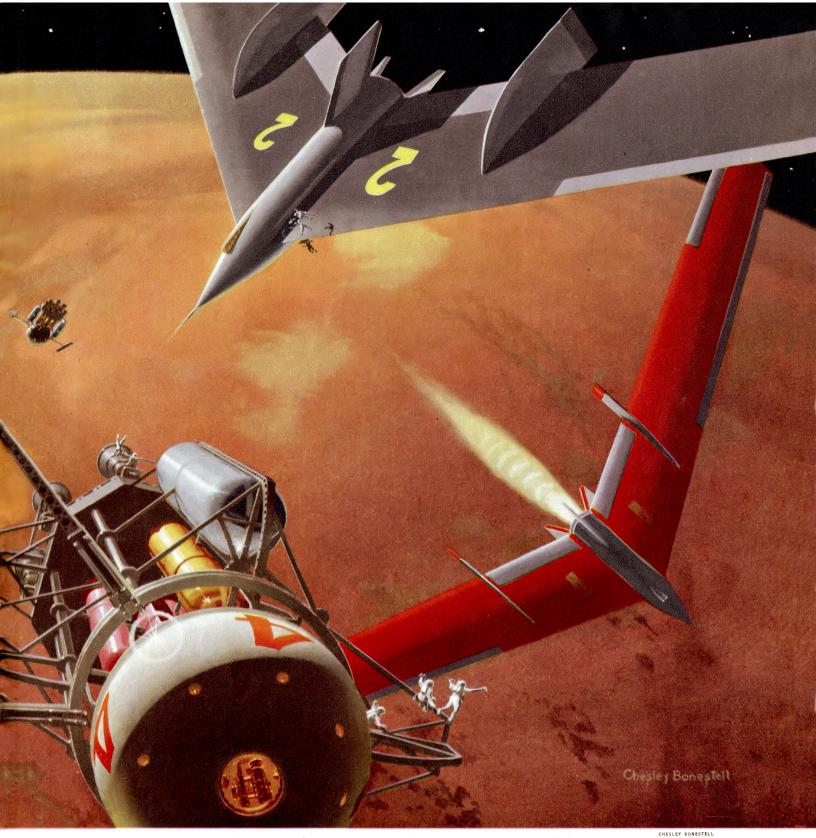

Besides the poisons resulting from cooking and the like, the engineering equipment—lubricants, hydraulic fluids, plastics, the metals in the vehicles —will give off vapors which could contaminate the atmosphere.

What can be done about this problem? No one has all the answers right now, but there's little doubt that by using chemical filters, and by cooling and washing the air as it passes through the air-conditioning apparatus, the synthetic atmosphere can be made safe to live in.

Besides removing the impurities from the manmade air, it may be necessary to add a few. Man has lived so long with the impurities in the earth's atmosphere that no one knows whether he can exist without them. By the time of the Mars expedition, the scientists may decide to add traces of dust, smoke and oil to the synthetic air—and possibly iodine and salt as well.

I am convinced that we have, or will acquire, the basic knowledge to solve all the physical problems of a flight to Mars. But how about the psychological problem? Can a man retain his sanity while cooped up with many other men in a crowded area, perhaps twice the length of your living room, for more than thirty months?

Share a small room with a dozen people completely cut off from the outside world. In a few weeks the irritations begin to pile up. At the end of


The first landing party takes off for Mars. Two other landing planes will wait until runway is prepared for them, and the remaining seven ships

a few months, particularly if the occupants of the room are chosen haphazardly, someone is likely to go berserk. Little mannerisms—the way a man cracks his knuckles, blows his nose, the way he grins, talks or gestures—create tension and hatred which could lead to murder.

Imagine yourself in a space ship millions of miles from earth. You see the same people every day. The earth, with all it means to you, is just another bright star in the heavens; you aren't sure you'll ever get back to it. Every noise about the rocket ship suggests a breakdown, every crash a meteor collision. If somebody does crack, you can't call off the expedition and return to earth. You'll have to take him with you.

The psychological problem probably will be at its worst during the two eight-month travel periods. On Mars, there will be plenty to do, plenty to see. To be sure, there will be certain problems on the planet, too. There will be considerable confinement. The scenery is likely to be grindingly monotonous. The threat of danger from some unknown source will hang over the explorers constantly. So will the knowledge that an extremely complicated process, subject to possible breakdown, will be required to get them started on their way back home. Still, Columbus' crew at sea faced much the same problems the explorers will face on Mars; the fifteenthcentury sailors felt the psychological tension, but no one went mad.

But Columbus traveled only ten weeks to reach America; certainly his men would never have stood an eight-month voyage. The travelers to Mars will

will stay in 600-mile orbit. Arms on cargo ships hold screenlike dish antennas (for communication), trough-shaped solar mirrors (for power)

have to, and psychologists undoubtedly will make careful plans to keep up the morale of the voyagers.

The fleet will be in constant radio communication with the earth (there probably will be no television transmission, owing to the great distance). Radio programs will help relieve the boredom, but it's possible that the broadcasts will be censored before transmission; there's no way of telling how a man might react, say, to the news that his home town was the center of a flood disaster. Knowing would do him no good—and it might cause him to crack. **Collier's for April 30, 1954** Besides radio broadcasts, each ship will be able to receive (and send) radio pictures. There also will be films which can be circulated among the space ships. Reading matter will probably be carried in the form of microfilms to save space. These activities—plus frequent intership visiting, lectures and crew rotations—will help to relieve the monotony.

There is another possibility, seemingly fantastic, but worth mentioning briefly because experimentation already has indicated it may be practical. The nonworking members of a Mars expedition may actually hibernate during part of the long voyage. French doctors have induced a kind of artificial hibernation in certain patients for short periods, in connection with operations for which they will need all their strength (Collier's, December 11, 1953— Medicine's New Offensive Against Shock, by J. D. Ratcliff). The process involves a lowering of the body temperature, and the subsequent slowing down of all the normal physical processes. On a Mars expedition, such a procedure, over a longer period, would solve much of the psychological problem, would cut sharply into the amount of food required for the trip, and would, if successful, leave the expedition members in superb physical condition for the ordeal of exploring the planet.

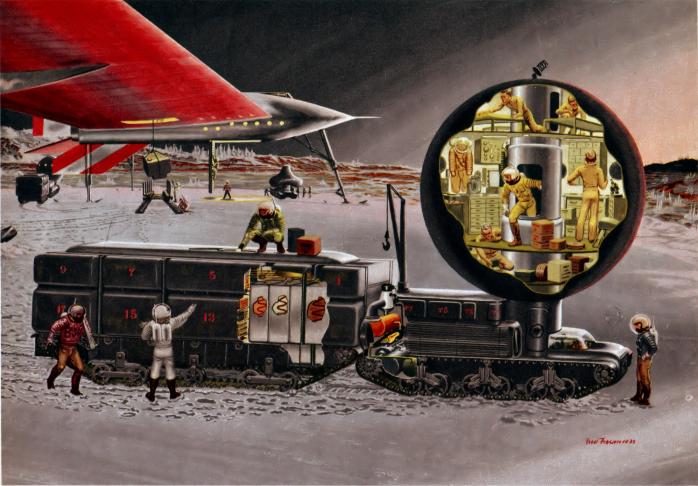
Certainly if a Mars expedition were planned for the next 10 or 15 years no one would seriously consider hibernation as a solution for any of the problems of the trip. But we're talking of a voyage to be made 100 years from now; I believe that if the French experiments bear fruit, hibernation may actually be considered at that time.

Finally, there has been one engineering development which may also simplify both the psychological and physical problems of a Mars voyage. Scientists are on the track of a new fuel, useful only in the vacuum of space, which would be so economical that it would make possible far greater speeds for space journeys. It could be used to shorten the travel time, or to lighten the load of each space ship, or both. Obviously, a four- or six-month Mars flight would create far fewer psychological hazards than a trip lasting eight months.

In any case, it seems certain that the members of an expedition to Mars will have to be selected with great care. Scientists estimate that only one person in every 6,000 will be qualified, physically, mentally and emotionally, for routine space flight. But can 70 men be found who will have those qualitiesand also the scientific background necessary to explore Mars? I'm sure of it.

One day a century or so from now, a fleet of rocket ships will take off for Mars. The trip could be made with 10 ships launched from an orbit, about 1,000 miles out in space, that girdles our globe at its equator. (It would take tremendous power and vast quantities of fuel to leave directly from the earth. Launching a Mars voyage from an orbit about 1,000 miles out, far from the earth's gravitational pull, will require relatively little fuel.) The Mars-bound vehicles, assembled in the orbit, will look like bulky bundles of girders, with propellant tanks hung on the outside and great passenger cabins perched on top. Three of them will have torpedo-shaped noses and massive wings-dismantled, but strapped to their sides for future use. Those bullet noses will be detached and will serve as landing craft, the only vehicles that will actually land on the neighbor planet. When the 10 ships are 5,700 miles from the earth, they will cut off their rocket motors; from there on, they will coast unpowered toward Mars.

After eight months they will swing into an orbit around Mars, about 600 miles up, and adjust speed to keep from hurtling into space again. The expedition will take this intermediate step, instead of proceeding directly to Mars, for two main reasons: first, the ships (except for the three detachable torpedo-shaped noses) will lack the streamlining required for flight in the Martian atmosphere; second, it will be more economical to avoid carrying all the fuel needed for the return to earth (which now comprises the bulk of the cargo) all the way down to Mars and then back up again.


Upon reaching the 600-mile orbit—and after some exploratory probings of Mars's atmosphere with unmanned rockets-the first of the three landing craft will be assembled. The torpedo nose will

be unhooked, to become the fuselage of a rocket plane. The wings and a set of landing skis will be attached, and the plane launched toward the surface of Mars.

The landing of the first plane will be made on the planet's snow-covered polar cap-the only spot where there is any reasonable certainty of finding a smooth surface. Once down, the pioneer landing party will unload its tractors and supplies, inflate its balloonlike living quarters, and start on a 4,000mile overland journey to the Martian equator, where the expedition's main base will be set up (it is the most livable part of the planet-well within the area that scientists want most to investigate). At the equator, the advance party will construct a landing strip for the other two rocket planes. (The first landing craft will be abandoned at the pole.) In all, the expedition will remain on the planet 15 months. That's a long time-but it still will be too short to learn all that science would like to

know about Mars. When, at last, Mars and the earth begin to swing toward each other in the heavens, and it's time to go back, the two ships that landed on the equator will be stripped of their wings and landing gear, set on their tails and, at the proper moment, rocketed back to the 600-mile orbit on the first leg of the return journey.

What curious information will these first explorers carry back from Mars? Nobody knows-and it's extremely doubtful that anyone now living will ever know. All that can be said with certainty to-day is this: the trip can be made, and will be made . . . someday.

FRED FREEMAN

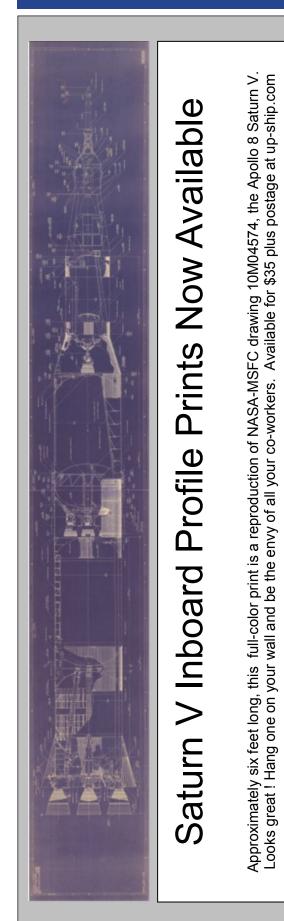
Advance party, after landing on Martian snow in ski-equipped plane, prepares for trip to equator. Men live in inflatable, pressurized spheres mounted on tractors, enter and leave through air locks in the

central column. Sphere on tractor at rear center is just being blown up. Cutaway of tractor, foreground, shows closed-circuit engine, run by hydrogen peroxide, oil. Trailer cutaway shows fuel supply, cargo

Collier's for April 30, 1954

After 15-month exploration, the Mars expedition prepares for return flight to earth. Two landing planes are set on tails, with wings and landing gear removed. They will rocket back to the 600-mile orbit on first leg of journey

Q


3

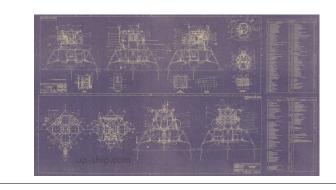
常有

12

21414

http:/www.up-ship.com

Lunar Module Equipment Locations diagrams


Full color, high quality print of NASA-MSC drawing dated January 1969 showing the Lunar Module and many of the important bits of equipment that went into it.

Prints are about 32 inches/81 cm wide by 18 inches/46 cm tall.

The original was B&W. It has been converted to a full-color "blueprint" using the Saturn V as a color reference.

http://www.up-ship.com/drawndoc/saturnvprints.htm

\$25

SPACE

Scientific Preparatory Academy for Cosmic Explorers

Foundation of the Space-Faring Civilization of the Third-Millennium

SPACE is a recently established space exploration institution that inextricably combines a rigorous educational program with actual, hands-on space system development and exploration expeditions.

Visit SPACE website TODAY www.spaceacad.org

The 1st SPACE Retreat

THE COMPLETE WORKS OF ROBERT A.

Limited Collector's Set 7 46 Archival Volumes

Timeless ideas, timeless edition!

- Set includes all of Heinlein's published work, restored to the last version he had a hand in preparing.
- Featuring never before published correspondence and screenplays.
- Each volume has a unique icon, frontispiece photograph of Heinlein and is individually hand numbered with a limited print run.
 - **Order Today!**

www.virginiaedition.com
713-861-3600

Timeless stories awaiting Rediscovery

The Virginia Edition

The complete works of Robert A. Heinlein To order your set visit: www.virginiaedition.com or call: 713-861-3600 Payment plans available. Free Magnifying Reader and Poster Set! Expires June 1, 2013 Use Coupon Code: virginia

AIAA Houston Section Horizons September / October 2013 Page 48

HIL

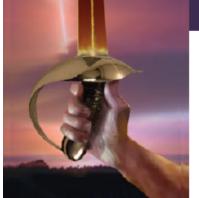
0

Exerpt from "Ray Guns and Rocketships" first published in 1952

It was suggested that I comment on the writing of science fiction for children. I am not sure just how to do this as I am not sure that I have written any sciene fiction for children. It is true that I have a group of books which are catalogued as being intended for "boys of ten and older"—but I have found that this list is read by adults as well as by boys (and girls!) and that my books intended for adults are read by my younger readers as well as by adults. Science fiction is quite ambivalent in this respect. A book so juvenile that it will insult the intelligence of adults is quite likely to insult the intelligence of the kids.

When I was a child myself I used to get quite annoved at authors who "wrote down." When I was first asked to do a book intended for kids I swore a solemn oath that I would never "write down"-it is better by far that a child should fail to grasp some portion of a story than it is to patronize him. So I believe and my experience seems to bear me out. In my own work I make just two minor distinctions between copy intended nominally for adults and copy intended nominally for not-yet-adults. In the boys' list I place a little less emphasis on boy-meets-girl and a little more emphasis on unadulterated science-but these are matters of slight emphasis only. On the first point I am obeying a taboo set up by adults, it being my own recollection that kids get interested in boy-meets-girl at a very tender age. On my second point it is my recollection and my more recent observation that kids are more interested in "how" and "why" than their parents usually are. The kids really want to know how the spaceship operates; the adults frequently don't care-so I try to give the kids enough detail in matters technological to satisfy them without

giving so much that it will bore an adult. In any case a science fiction story should be a story first of all; it is not intended to replace science text books.


But most especially in writing for kids the science in it should be valid. When they spot an error they are not likely to forgive it.

In many ways science fiction belongs to the kids. They know that "it hasn't happened yet"—but they believe that it will happen. They expect to grow up to build space ships, to pilot them. They still believe in change and they are undismayed by the wonderful and terrifying future we have in front of us. If an adult enjoys science fiction, it is almost a guarantee that he has managed to carry over a youthful point of view, a mind not yet calcified, a belief in change and the future. It is for the youngster and for this adult who still has something of youth about him that we write.

To read more visit www.virginiaedtion.com

"Yield to temptation. It may not pass your way again." ~ *R. Heinlein*

To order your set visit: www. virginiaedition.com call: 713-861-3600

> Payment plans available.

Exerpt from "All You Zombies"

First published in The Magazine of Fantasy and Science Fiction (March 1959)

2217 TIME ZONE V (EST) 7 Nov 1970 NYC—"Pop's Place": I was polishing a brandy snifter when the Unmarried Mother came in. I noted the time—10.17 p.m. zone five or eastern time November 7th, 1970. Temporal agents always notice time & date; we must.

The Unmarried Mother was a man twenty-five years old, no taller than I am, immature features and a touchy temper. I didn't like his looks—I never had—but he was a lad I was here to recruit, he was my boy. I gave him my best barkeep's smile.

Maybe I'm too critical. He wasn't swish; his nickname came from what he always said when some nosy type asked him his line: "I'm an unmarried mother." If he felt less than murderous he would add: "—at four cents a word. I write confession stories."

If he felt nasty, he would wait for somebody to make something of it. He had a lethal style of in-fighting, like a female cop—one reason I wanted him. Not the only one.

He had a load on and his face showed that he despised people more than usual. Silently I poured a double shot of Old Underwear and left the bottle. He drank, poured another.

I wiped the bar top. "How's the 'Unmarried Mother' racket?"

His fingers tightened on the glass and he seemed about to throw it at me; I felt for the sap under the bar. In temporal manipulation you try to figure everything, but there are so many factors that you never take needless risks.

Continued on page 4.

The Virginia Edition represents authoritative texts for all of Robert Heinlein's published fiction and nonfiction, newly typeset, whenever possible from the editions put in final form by Heinlein's own hand. In other cases, the definitive texts are represented by editions restored to their intended state, in publications overseen directly by Virginia Heinlein after her husband's passing. Mrs. Heinlein's role in perpetuating her husband's work and legacy was at all times crucial, both during and after the writing. It is truly fitting that her name be remembered in close connection with his.

Robert Heinlein and Virginia Gerstenfeld late fall 1947. Permission by Robert A. and Virginia Heinlein Prize Trust.

I saw him relax that tiny amount they teach you to watch for in the Bureau's training school. "Sorry," I said. "Just asking, 'How's business?' Make it 'How's the weather?'

He looked sour. "Business is okay. I write 'em, they print 'em, I eat." I poured myself one, leaned toward him. "Matter of fact," I said, "you write a nice stick-I've sampled a few. You have an amazingly sure touch with the woman's angle."

It was a slip I had to risk; he never admitted what pen-names he used. But he was boiled enough to pick up only the last. " 'Woman's angle!' " he repeated with a snort. "Yeah, I know the woman's angle. I should." "So?" I said doubtfully. "Sisters?"

"No. You wouldn't believe me if I told you."

"Now, now," I answered mildly, "bartenders and psychiatrists learn that nothing is stranger than the truth. Why, son, if you heard the stories I dowell, you'd make yourself rich. Incredible."

"You don't know what 'incredible' means!"

"So? Nothing astonishes me. I've always heard worse."

He snorted again. "Want to bet the rest of the bottle?"

"I'll bet a full bottle." I placed one on the bar.

"Well-" I signaled my other bartender to handle the trade. We were at the far end, a single-stool space that I kept private by loading the bar top by it with jars of pickled eggs and other clutter. A few were at the other end watching the fights and somebody was playing the juke box-private as a bed where we were. "Okay," he began, "to start with, I'm a bastard."

To read more visit www.virginiaedtion.com

"A society that gets rid of all its troublemakers goes downhill." ~ R. Heinlein

Join the Heinlein Society

Visit us at: www. heinleinsociety.org

AIAA Houston Section Horizons September / October 2013 Page 51

AIAA Houston Section P.O. Box 57524 Webster, TX 77598

The American Institute of Aeronautics and Astronautics

Right:

The **Houston Airport System** unveils part of its vision for the future of Ellington Airport with these conceptual <u>renderings</u> of a possible Spaceport. These drawings capture various elements of the overall project including a terminal facility, aviation museum and the accompanying aerospace industries that would most certainly arrive should Houston become home to the nation's ninth licensed Spaceport.

Dear Friends:

We are very proud of the fine work spaceport planning and design work accomplished by two of our Sasakawa International Center for Space Architecture (SICSA) graduates, Sam Ximenes (Class of 1987) and Nejc Trost (Class of 2013). We are also grateful for the broad positive recognition of their achievements by the Houston Airport System, by the regional aerospace community, and by the University of Houston (UH) Cullen College of Engineering which is featuring their contribution in the story below.

"UH Space Architects Help Design Houston's Proposed Spaceport," UH Cullen College of Engineering

 $\underline{http://www.egr.uh.edu/news/201310/uh-space-architects-help-design-houston\%E2\%80\%99s-proposed-spaceport}$

This story can also be found on the College's Aerospace Engineering homepage: <u>http://aerospace.egr.uh.edu/</u>

A gallery of spaceport design images created by our space architects can be accessed at http://www.fly2houston.com/SpaceportGallery

An overall spaceport proposal video presentation sponsored and hosted by the Houston Airport System can be viewed at http://www.youtube.com/watch?v=FQGRT8BeVDU

Another recent College of Engineering feature article story about SICSA/Space Architecture can be seen at http://egr.uh.edu/news/201309/shooting-stars-uhs-larry-bell-discusses-space-architecture

Yes, space vision and commitment is active and well in Space City and at our fine Tier One university. Together, we are committed to converting lofty dreams to realities.

Professor Larry Bell, Founding Director, University of Houston, Sasakawa International Center for Space Architecture (SICSA)

AIAA Mission & Vision Statement

The shaping, dynamic force in aerospace - THE forum for innovation, excellence and global leadership. AIAA advances the state of aerospace science, engineering, and technological leadership. Core missions include communications and advocacy, products and programs, membership value, and market and workforce development. The World's Forum for Aerospace Leadership

Become a member of AIAA!

You can join or renew online at the AIAA national web site: www.aiaa.org.