A Revisit From Near-Earth Object (NEO) 2012 TC 4

Eight days after its discovery, near-Earth object (NEO) $2012 \mathrm{TC}_{4}$ approached our planet to within $95,000 \mathrm{~km}$, or 25% of the Moon's distance, when it reached perigee at 05:29 UT on 12 October 2012. In this close flyby, $2012 \mathrm{TC}_{4}$ crossed Earth's orbit travelling inbound toward perihelion on 25.0 November 2012 UT, when it was about 91% of our distance from the Sun.

Even in the Earth's night sky before perigee, $2012 \mathrm{TC}_{4}$ was difficult to observe. Its absolute magnitude $H=26.525$ placed its diameter somewhere in the $7.5-30 \mathrm{~m}$ range, depending on its unknown surface reflectivity, making observations possible only at very close range. Upon entering Earth's daytime sky as it passed through perigee, $2012 \mathrm{TC}_{4}$'s orbit condition code (OCC) stood at 4 thanks to 281 visible light telescopic observations spanning a 7 -day arc. At $\mathrm{OCC}=4$, $2012 \mathrm{TC}_{4}$ along-track heliocentric position uncertainty would increase at rates up to 382 arcseconds per decade. ${ }^{1}$

Predicted position precision, together with knowledge of $2012 \mathrm{TC}_{4}$'s size and shape, can be vastly improved with radar observations. Although observations were attempted with the Goldstone, California DSS-14 planetary radar in 2012, no echoes were obtained before pointing uncertainties quickly exceeded the precision required to detect $2012 \mathrm{TC}_{4}$.

As it was lost to further observations in 2012, Earth gravity perturbations to $2012 \mathrm{TC}_{4}$ had increased the NEO's heliocentric orbit period from 1.455 years to 1.667 years. This increased period, remarkably close to $5 / 3$ years, indicated $2012 \mathrm{TC}_{4}$ would make its next 3 revolutions of the Sun in very nearly the same time Earth made 5 such revolutions. ${ }^{2}$

Thus, even as $2012 \mathrm{TC}_{4}$ was effectively lost a week after its discovery, there was hope it could be recovered 5 years later as it crossed Earth's orbit circa 12 October 2017. Half a decade later, searching for this faint NEO would not be easy. Due to its OCC $=4$ pedigree, $2012 \mathrm{TC}_{4}$ alongtrack heliocentric position uncertainty at that time would be up to 191 arc-seconds, equivalent to $139,000 \mathrm{~km}$ near Earth's heliocentric orbit. An OCC-based uncertainty estimate has order-ofmagnitude precision and can be improved in this case with a linear propagation of the October 2012 covariance matrix to 2017's Earth encounter. This propagation has a 3-sigma along-track heliocentric position uncertainty equivalent to ± 13.4 hours of geocentric motion, producing 2012 TC_{4} closest approach distances to Earth ranging from $460,000 \mathrm{~km}$ down to $13,000 \mathrm{~km}$.

At a distance of 56 million km, $2012 \mathrm{TC}_{4}$ was recovered with the European Southern Observatory's $8.2-\mathrm{m}$ telescopes at the Very Large Telescope Observatory in the Atacama Desert of Northern Chile from images obtained on 27 July, 31 July, and 5 August 2017. ${ }^{3}$ By early September 2017, with observations then spanning nearly 5 years, OCC for $2012 \mathrm{TC}_{4}$ dropped to 0 (along-track heliocentric position uncertainty increasing at up to 1.0 arc-second per decade).

Up to this point, $2012 \mathrm{TC}_{4}$ motion had been modeled using only gravity accelerations. When non-gravity effects modeling began on 11 September 2017, OCC temporarily increased to 2

[^0]
A Revisit From Near-Earth Object (NEO) 2012 TC $_{4}$

(along-track heliocentric position uncertainty increasing at up to 19.6 arc-seconds per decade). On 22 September, with OCC reduced back to 1 (along-track heliocentric position uncertainty increasing at up to 4.4 arc-seconds per decade), perigee had converged to 05:41 UT on 12 October 2017 with a distance of $50,100 \mathrm{~km}$. Geocentric motion during this Earth flyby is plotted in Figure 1.

Figure 1. Geocentric motion of $2012 \mathrm{TC}_{4}$ (blue) and the Moon (red) are plotted during 1112 October 2017 UT. Plot perspective is from 60° north of the ecliptic plane.

With OCC approaching 0 , even while non-gravity effects are modeled, prospects for obtaining $2012 \mathrm{TC}_{4}$ radar observations in 2017 greatly improve with respect to 2012's Earth encounter. The Goldstone planetary radar is scheduled to attempt $2012 \mathrm{TC}_{4}$ observations from 9 to 14 October. ${ }^{4}$ If recovery from Hurricane Maria damage permits, the Arecibo, Puerto Rico planetary radar will attempt additional observations.

On the Goldstone radar schedule extending from 2017 seven years into the future, $2012 \mathrm{TC}_{4}$ is by far the faintest upcoming target as reckoned by H. The Goldstone radar beam will illuminate about half of $2012 \mathrm{TC}_{4}$, so any imagery obtained will likely span just one to four pixels in a specific direction. The smallest NEO detected by Goldstone to date is $2012 \mathrm{XB}_{112}$, with $H=$ 29.9 and diameter of 2.5 m . Since this diminutive NEO's "imagery" was limited to one pixel when observed in December 2012, its shape remains unknown.

[^1]Just as in the 2012 Earth encounter, $2012 \mathrm{TC}_{4}$'s perigee location in 2017 is over Earth's trailing hemisphere as denoted by the "Earth's heliocentric velocity" annotation in Figure 1. ${ }^{5}$ Consequently, the 2017 encounter also increases $2012 \mathrm{TC}_{4}$'s heliocentric orbit period. But in this case, the post-flyby period of 2.062 years has no short-term mean motion resonance with Earth's heliocentric orbit. The next $2012 \mathrm{TC}_{4}$ close approach to our planet will be circa 17 October 2050 UT. The shift from 12 October for this event is due to $2012 \mathrm{TC}_{4}$ close encounters with Mars on 30 September 2034 UT and on 29 July 2050 UT. Effects of Earth gravity perturbations in 2017 on $2012 \mathrm{TC}_{4}$'s heliocentric orbit are illustrated in Figure 2.

Figure 2. Heliocentric motion of 2012 TC $_{4}$ (blue), the Earth (green), and Mars (red) are plotted from early April 2016 until mid-May 2019 to illustrate effects of the NEO's Earth encounter on 12 October 2017. Plot perspective is from 44° north of the ecliptic plane.

The author expresses his gratitude to $\mathrm{JPL} / \mathrm{Jon}$ Giorgini, who answered multiple inquiries regarding NEO prediction uncertainty and planetary radar capabilities in the context of this writing.

[^2]
[^0]: ${ }^{1}$ Reference http://www.minorplanetcenter.net/iau/info/UValue.html (accessed 24 September 2017), where the uncertainty parameter U is equivalent to OCC. Orbit data and their uncertainty statistics supplied for $2012 \mathrm{TC}_{4}$ are obtained from JPL's Horizons ephemeris server via https://ssd.jpl.nasa.gov/?horizons (accessed 24 September 2017).
 ${ }^{2}$ In astrodynamics terminology, $2012 \mathrm{TC}_{4}$ is said to be in a $3: 5$ mean motion resonance with Earth under these conditions. Encounters giving rise to such resonances each entail flying through a restricted and unique region in space about a planetary body called a keyhole.
 ${ }^{3}$ Reference https://www.jpl.nasa.gov/news/news.php?feature $=6906$ (accessed 24 September 2017).

[^1]: ${ }^{4}$ Reference https://echo.jpl.nasa.gov/asteroids/goldstone_asteroid_schedule.html (accessed 25 September 2017).

[^2]: ${ }^{5}$ As in 2012, this Earth flyby occurs with $2012 \mathrm{TC}_{4}$ moving inbound toward perihelion. This solar closest approach will occur on 4.0 November 2017 UT at about 97% of Earth's distance from the Sun.

