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How does Earth’s climate change?




So the Earth absorbs an average of 238 W/m? from the Sun, but that does
not mean that every square meter absorbs this amount. Where is it
absorbing less? Where is it absorbing more?

320 W/m?
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Also Tilt of Earth (~23.5 deg)

NASA Apollo 17 (12/7/1972)



Earth’'s Energy Budget— No GHG

TEarth - 257K - '16°C

Dessler, 2012
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Earth’s Energy Budget — witf:

Dessler, 2012



Earth’s Energy Budget — with atmes

2015 T, ,, = 289K = 16°C

Dessler, 2012
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Time scales of cli
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Ocean sediment coere record

2 I ' ‘ ‘ ' ' ‘ N A 2
: 2.5’M 1 kyr cycle 4 ,ﬁ'w\i*elwm‘wk*.’!“3*‘)&!@!14@Jf
Iy

| WJ

\ o

o O AN
Equivalent

Five Million Years of
Climate Change
From Sediment Cores -

oE
L 0
;é)'&
T
O c
© &
o 2
©
(@]

Vostok AT (°C)

GlobalWarming Art (t), Ruddiman, 2008 (b



Coring Earth’ s ice sheets

Twickler — GISP2 SMO (1994)
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CO, measurement: record
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CO, Emissons (18

Data: CDIAC/GCP

CO, emissions (GtCO,/yr)
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Global Annual Surfaceslemperature
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Volcanic cooling and El:Nineiwarming
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Where is the trapped h

‘ Continents

O Greenland Ice Sheet
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O Antarctic Ice Sheet
0.2%

NOAA NESDIS (2014)



Heat Content (10%J)
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Ten Indicators of Warming

t Air Temperature Near Surface (Troposphere)

Water Vapor

Glaciers and Ice Sheets
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Sea Level
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Ocean Heat Content |

National Climate Assessment, 2014



Natural warmi

No natural change

Smaller
greenhouse
effect

Ruddiman, 2008



Another future global te

2070-2100 Prediction
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Lefer 41 — iv. future cc http://www.globalwarmingart.com/
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Climate Change:Summanry

« We have explored the fundamental physics of climate
change, and you all have seen greenhouse gases tra
heat and war

The data le

changing t




Climate Change:Summanry

- We are not certain how bad this climate change will be, but
the upper end of the range (global warmlng of 5° C or more
by the end of t
for the expe
catastrophi

The Iower




Should we reduce:emissions?

- This decision must be
because we do na
questions:

1)!How much warming will we experience if we do

2) How bad will that much warming be?

3) How expensive will it be to reduce emissions?

4) How much warming can we avoid?




What is the Urgency?

- Why must we make &
emissions or not.

of lags in the climate system and in our
y, we must begin efforts to reduce emissions
n order to significantly reduce warming in the
second half of the 21st century.

While we have a reduced capacity to affect the
trajectory of temperatures over the next decade, our
decision will determine the climate for 2050 and
beyond.




Decisions under. uncertainty.

- This is not an unusus

- Many importar
of uncertain

- This incl

Should we aid the Syrian rebels?

Should we help the Ukraine?

Should we lower corporate taxes?

What to do about illegal immigrants?

Should federal government legalize marijuana?




Values

- These decisions contain implicit value judgments about the
choices. Consider the following two arguments:

1) Because the
serious, we
even thouc

Both statements argue that we must err on the side of caution
In order to avoid a bad outcome. However, the bad
outcome is different in these two arguments.




Which potential error is worse?

Must we be certain beyond a reasonable doubt that cllmate
change is a serious t

reduce emissions?

Which error is

Reducing €
turns out

Not redu




Advantages?

Energy security by reducing imports of oil from politically
hostile countries AND reductions in air pollution.

Costs would be
least some of
efforts once w

Would a p
use of fo




Reducing emissions is reversible

- If an action you take is irreversible, then you have to be
more certain that it's the right action than if a decision is

easily reversible.

If we decide
then we ca
emissions

But the con
dioxid

Serio

carbo




Costs of reductions

- We know that putting a price on carbon will likely spur
development of new technologies by providing a financial
incentive to red
economy.

- The resulti
a wide ran




« Estimating the costs o
therefore the benefi

can be diffi




Timing Is an issue

* Another problem in estimating the costs of climate change
comes from the




Costs/Impacts not equally distributed

Many of the hardest-hit regions are also the poorest regions,
and those that have contributed little to climate change.

The worst-case
outcomes suc

For some pe
trumps a

And the
compel




Less than 2°C of warming

A simpler way to select a long-term goal is to simply pick a
limit for temperature or atmospherlc carbon dioxide above
which you judge t

The limit shoul
to avoid serio

politically and

Over the
around
tempera




« Cut emissions by 50—
to reduce emissio




To best ensure we are able to limit warming to 2°C it is essential that annual global
emissions peak by the year 2020, and are reduced steeply thereafter.

12

11 J e -~ PEAK EMISSIONS

PgC s

~50% OF 2020
EMISSIONS
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IPCC. 2007



Global CO,

Data: CDIAC/GCP

Note: 1 ton C = 3.67 tons CO,

35-

CO, emissions (GtCO,/yr)
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CDIAC/GCP, 2014



What factors control emissions of GHG? (PAT)

Emissions trends reflect a combination of economic factors:

P = Population
A = Affluence =
T = Technolog

Energy |
Carbo




s it possible to cut GHG emissions 50%

Both the population and affluence of the world will increase by
2050. Estimates

years would be

per year.

In order fqr e
population
reduce t




Trend In

Primary energy consumption per real dollar GDP
index, 1950=1.0
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Carbon intensity of economies

How much carbon dioxide (CO2) countries emit per dollar of economic output
is a good measure of how efficient they are.

Kg of CO2 per S1 GDP (PPP)
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US Bureau of Economic Analysis
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Recent Tre
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How to get there?

« Rapidly switch to energy sources that release less (and/or
do not release any) greenhouse gases.

By “rapidly”,
watts (1 GW
2015 and 2




Six steps towards a solution

1) Put a price on emissions of carbon dioxide and other
greenhouse gases.

2) Efficiency st




Costs unknown

The climate change challenge is not unique; we almost never
know in advance how much it will cost to comply with
environmental regulations.

1980s, some
would cause
developed wo
millions dying

It turned
protectio

Dessler, 2012



Mid-course corrections allowed

Whether this will happen or not in this case is impossible to
know until we put a price on carbon.

If it turns out th
hardship econ
we can return
climate.

But if re
cost, th
severe




Climate change common greund

Climate scientists agree that:

1) Earth’s total heat content has increased over the past 50
years, a co ' '

2) Concentrati

gases ha
years du

3) Climate
our

4) World
mitig




Questions?
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Lefer 11 —i. basics

Temperature of water
(response)

Source of heat

(forcing)

Heat
turned on

Heat maintained ——»

Water temperature

Cool

Response
time

Ruddiman, 2008



Albedo-temperature fe

Initial

change Climate
cooling \

Lefer 13 —i. basics Ruddiman, 2008



Albedo-temperature feedback

Lefer 14 —i. basics Source: NASA



Albedo-temperature feedback

Lefer 15 —i. basics Source: NASA



Positive and negative feeabacks

Doubling
of =g
atmospheric

O, Increased CO,

trapping of
radiation in
clear sky

Lefer 17 —i. basics Ruddiman, 2008



Coring Earth’ s ice sheets

Lefer 20 — ii. past climates Twickler — GISP2 SMO (1994)
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Global Ocean Temperature
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Naturallinterannual variability
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Difference (°C) from 1961-90
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Kevin Trenberth, 2008



Radiative forcing o
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Response to abrupt {¥]

CO;anaiSO; emissions#

C02 and 502

> Higher

0
A Excess input rates

Lefer 37 — iv. future cc Ruddiman, 2008



Response to abrupt {¥]

CO;anaiSO; emissions#
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B Excess concentrations in atmosphere

Lefer 38 — iv. future cc Ruddiman, 2008



Response to abrupt {¥]

CO;anaiSO; emissions#

A

Warmer

Years Hundreds of years
C Global temperature change
Time

Lefer 39 — iv. future cc Ruddiman, 2008



